Toán lớp 5 trang 14 Luyện tập

Chuyển các hỗn số sau thành phân số: So sánh các hỗn số:

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Video hướng dẫn giải

Chuyển các hỗn số sau thành phân số:

\( 2\dfrac{3}{5}\) ;        \( 5\dfrac{4}{9}\) ;          \( 9\dfrac{3}{8}\) ;         \( 12\dfrac{7}{10}\).

Phương pháp giải:

Có thể viết hỗn số thành một phân số có:

- Tử số bằng phần nguyên nhân với mẫu số rồi cộng với tử số ở phần phân số.

- Mẫu số bằng mẫu số ở phần phân số.

Lời giải chi tiết:

\( \displaystyle 2\dfrac{3}{5} = {{2 \times 5 + 3} \over 5} =\dfrac{13}{5}\) ;        

\( \displaystyle 5\dfrac{4}{9} = {{5 \times 9 + 4} \over 9} =\dfrac{49}{9}\) ;

\( \displaystyle 9\dfrac{3}{8}= {{9 \times 8 + 3} \over 8}  =\dfrac{75}{8}\) ;

\( \displaystyle 12\dfrac{7}{10} = {{12 \times 10 + 7} \over {10}}  =\dfrac{127}{10}\) . 

Bài 2

Video hướng dẫn giải

So sánh các hỗn số:

a) \(3\dfrac{9}{{10}}\) và \(2\dfrac{9}{{10}} ;\)                                        b) \(3\dfrac{4}{{10}}\) và \(3\dfrac{9}{{10}};\)

c) \(5\dfrac{1}{{10}}\) và \(2\dfrac{9}{{10}} ;\)                                      d) \(3\dfrac{4}{{10}}\) và \(3\dfrac{2}{5} .\)

Phương pháp giải:

Để so sánh hai hỗn số ta chuyển hỗn số thành phân số rồi so sánh 2 phân số với nhau.

Lời giải chi tiết:

Cách 1: Chuyển hỗn số thành phân số rồi so sánh:

a) \(3\dfrac{9}{{10}} = \dfrac{{39}}{{10}}\;;\;\;2\dfrac{9}{{10}} = \dfrac{{29}}{{10}}.\) 

Mà \(\dfrac{{39}}{{10}} > {\rm{ }}\dfrac{{29}}{{10}}\). Vậy : \(3\dfrac{9}{{10}} > 2\dfrac{9}{{10}}\).

 

b) \(3\dfrac{4}{{10}} = \dfrac{{34}}{{10}}\;;\;\;3\dfrac{9}{{10}} = \dfrac{{39}}{{10}}.\)

Mà \(\dfrac{{34}}{{10}} < \dfrac{{39}}{{10}}\).  Vậy : \(3\dfrac{4}{{10}} < {\rm{ }}3\dfrac{9}{{10}}\).

 

c) \(5\dfrac{1}{{10}} = \dfrac{{51}}{{10}}\;;\;\;2\dfrac{9}{{10}} = \dfrac{{29}}{{10}}.\)

Mà \(\dfrac{{51}}{{10}} > {\rm{ }}\dfrac{{29}}{{10}}\).  Vậy : \(5\dfrac{1}{{10}} > {\rm{ }}2\dfrac{9}{{10}}\).

 

d) \(3\dfrac{4}{{10}} = \dfrac{{34}}{{10}} = \dfrac{{17}}{5}\;;\;\;3\dfrac{2}{5} = \dfrac{{17}}{5}\).

Mà \(\dfrac{{17}}{5} = \dfrac{{17}}{5}\).  Vậy : \(3\dfrac{4}{{10}} = {\rm{ }}3\dfrac{2}{5}\).

 

Cách 2:

a) Ta có  \(3> 2\).  Vậy  \(3\dfrac{9}{{10}} > 2\dfrac{9}{{10}}\).)

b) Ta có  \(3= 3\) và \(\dfrac{{4}}{{10}} < \dfrac{{9}}{{10}}\). Vậy \(3 \dfrac{{4}}{{10}} < 3 \dfrac{{9}}{{10}}\).)

c) Ta có \(5> 2\). Vậy  \(5\dfrac{1}{{10}} > {\rm{ }}2\dfrac{9}{{10}}\).)

d) Ta có  \(3=3\) và  \(\dfrac{{4}}{{10}} = \dfrac{{4:2}}{{10:2}} = \dfrac{2}{5}\). Vậy  \(3\dfrac{4}{{10}} = {\rm{ }}3\dfrac{2}{5}\).) 

 

 

Bài 3

Video hướng dẫn giải

Chuyển các hỗn số sau thành phân số rồi thực hiện phép tính:

a) \( 1\dfrac{1}{2}+1\dfrac{1}{3}\) ;                     b) \( 2\dfrac{2}{3}-1\dfrac{4}{7}\);

c) \( 2\dfrac{2}{3} \times 5\dfrac{1}{4}\) ;                     d) \( 3\dfrac{1}{2}:2\dfrac{1}{4}\) .

Phương pháp giải:

Chuyển các hỗn số thành phân số rồi thực hiện phép cộng, trừ, nhân, chia hai phân số như thông thường.

Lời giải chi tiết:

a) \( 1\dfrac{1}{2}+1\dfrac{1}{3} =\dfrac{3}{2}+\dfrac{4}{3}=\dfrac{9}{6}+\dfrac{8}{6}=\dfrac{17}{6}\) ;

b) \( 2\dfrac{2}{3}-1\dfrac{4}{7} =\dfrac{8}{3}-\dfrac{11}{7}\)\(=\dfrac{56}{21}-\dfrac{33}{21}=\dfrac{23}{21}\) ;

c) \( 2\dfrac{2}{3} \times 5\dfrac{1}{4} =\dfrac{8}{3}\times \dfrac{21}{4}\)\(=\dfrac{8 \times 21}{3 \times 4}= \dfrac{4 \times 2 \times 7 \times 3}{3 \times 4}=14\) ;

d) \( 3\dfrac{1}{2}:2\dfrac{1}{4}=\dfrac{7}{2}:\dfrac{9}{4}\)\(=\dfrac{7}{2} \times \dfrac{4}{9}= \dfrac{28}{18}=\dfrac{14}{9}\) .

>> Xem thêm

Quảng cáo
close