Bài 1, 2, 3, 4, 5 trang 138, 139 SGK Toán 4

Bài 1. Trong các phép tính sau, phép tính nào làm đúng?

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Bài 1

Video hướng dẫn giải

Trong các phép tính sau, phép tính nào làm đúng?

\(\eqalign{
& a)\,\,{5 \over 6} + {1 \over 3} = {{5 + 1} \over {6 + 3}} = {6 \over 9} = {2 \over 3}; \cr 
& b)\,\,{5 \over 6} - {1 \over 3} = {{5 - 1} \over {6 - 3}} = {4 \over 3}; \cr 
& c)\,\,{5 \over 6} \times {1 \over 3} = {{5 \times 1} \over {6 \times 3}} = {5 \over {18}}; \cr 
& d)\,\,{5 \over 6}:{1 \over 3} = {1 \over 3} \times {5 \over 6} = {{1 \times 5} \over {3 \times 6}} = {5 \over {18}} \cdot \cr} \)

Phương pháp giải:

Áp dụng các quy tắc sau:

- Muốn cộng (hoặc trừ) hai phân số ta quy đồng mẫu số hai phân số rồi cộng (hoặc trừ) hai phân số sau khi quy đồng.

- Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.

- Muốn chia hai phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Lời giải chi tiết:

Phép tính c) đúng.

Phép tính a), b) sai vì muốn cộng (hoặc trừ) hai phân số khác mẫu số ta quy đồng mẫu số, rồi cộng (hoặc trừ) hai phân số đã quy đồng mẫu số.

Phép tính d) sai vì muốn chia một phân số cho một phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược.

Bài 2

Video hướng dẫn giải

Tính:

\(\eqalign{
& a)\,\,{1 \over 2} \times {1 \over 4} \times {1 \over 6};\,\,\, \cr 
& b)\,\,{1 \over 2} \times {1 \over 4}:{1 \over 6}; \cr 
& c)\,\,{1 \over 2}:{1 \over 4} \times {1 \over 6} \cdot \cr} \)

Phương pháp giải:

Biểu thức chỉ có phép nhân và phép chia thì ta tính lần lượt từ trái sang phải.

Lời giải chi tiết:

a) $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{6} = \frac{{1 \times 1 \times 1}}{{2 \times 4 \times 6}} = \frac{1}{{48}}$

b) $\frac{1}{2} \times \frac{1}{4}:\frac{1}{6} = \frac{1}{2} \times \frac{1}{4} \times \frac{6}{1} = \frac{{1 \times 1 \times 6}}{{2 \times 4 \times 1}} = \frac{6}{8} = \frac{3}{4}$

c) $\frac{1}{2}:\frac{1}{4} \times \frac{1}{6} = \frac{1}{2} \times \frac{4}{1} \times \frac{1}{6} = \frac{{1 \times 4 \times 1}}{{2 \times 1 \times 6}} = \frac{4}{{12}} = \frac{1}{3}$

 



Bài 3

Video hướng dẫn giải

Tính: 

\(\eqalign{
& a)\,\,{5 \over 2} \times {1 \over 3} + {1 \over 4}; \cr 
& b)\,\,{5 \over 2} + {1 \over 3} \times {1 \over 4}; \cr 
& c)\,\,{5 \over 2} - {1 \over 3}:{1 \over 4} \cdot \cr} \)

Phương pháp giải:

Biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện phép tính nhân, chia trước, thực hiện phép cộng, trừ sau.

Lời giải chi tiết:

\(\eqalign{
& a)\,\,{5 \over 2} \times {1 \over 3} + {1 \over 4} = {5 \over 6} + {1 \over 4}  = {{10} \over {12}} + {3 \over {12}} = {{13} \over {12}} \cr 
& b)\,\,{5 \over 2} + {1 \over 3} \times {1 \over 4} = {5 \over 2} + {1 \over {12}}  = {{30} \over {12}} + {1 \over {12}} = {{31} \over {12}} \cr}  \) 

\( \displaystyle c)\,\,{5 \over 2} - {1 \over 3}:{1 \over 4} = {5 \over 2} - {1 \over 3} \times {4 \over 1} \)

\( \displaystyle = {5 \over 2} - {4 \over 3} \)\( \displaystyle= {{15} \over 6} - {8 \over 6} = {7 \over 6} \) 

Bài 4

Video hướng dẫn giải

Người ta cho một vòi nước chảy vào bể chưa có nước. Lần thứ nhất chảy vào \( \displaystyle {3 \over 7}\) bể, lần thứ hai chảy vào thêm \( \displaystyle {2 \over 5}\) bể. Hỏi còn mấy phần của bể chưa có nước?

Phương pháp giải:

- Coi bể nước khi đầy nước là \(1\) đơn vị.

- Tính số phần bể đã có nước = số phần nước chảy vào bể lần thứ nhất \(+\) số phần nước chảy vào bể lần thứ hai.

- Số phần bể chưa có nước = \(1-\) số phần bể đã có nước.

Lời giải chi tiết:

Tóm tắt

Lần thứ nhất: \( \displaystyle {3 \over 7}\) bể

Lần thứ hai chảy thêm: \( \displaystyle {2 \over 5}\) bể

Còn lại: .... phần bể?

Bài giải

Coi bể nước khi đầy nước là \(1\) đơn vị.

Số phần bể có nước là:

\( \displaystyle {3 \over 7} + {2 \over 5} = {{29} \over {35}}\) (bể)

Số phần bể còn lại chưa chứa nước là: 

                                         $1 - \frac{{29}}{{35}} = \frac{{35}}{{35}} - \frac{{29}}{{35}} = \frac{6}{{35}}$ (bể)

                  Đáp số: \( \displaystyle{6 \over {35}}\) bể.

Bài 5

Video hướng dẫn giải

Một kho chứa \(23\; 450kg\) cà phê. Lần đầu lấy ra \(2710kg\) cà phê, lần sau lấy ra gấp đôi lần đầu. Hỏi trong kho còn lại bao nhiêu ki-lô-gam cà phê ?

Phương pháp giải:

- Tính số cà phê lấy ra lần sau = số cà phê lấy ra lần đầu \(\times\; 2\).

- Tính số cà phê lấy ra hai lần = số cà phê lấy ra lần đầu \(+\) số cà phê lấy ra lần sau.

- Tính số cà phê còn lại = số cà phê ban đầu \(-\) số cà phê lấy ra hai lần.

Lời giải chi tiết:

Tóm tắt

Kho chứa: 23 450 kg cà phê

Lần đầu lấy ra: 2710kg

Lần sau lấy: gấp đôi lần đầu

Còn lại: ....kg?

Bài giải

Lần sau đã lấy ra số ki-lô-gam cà phê là:

\(2710 × 2 = 5420\; (kg)\)

Cả hai lần đã lấy ra số ki-lô-gam cà phê là:

\( 2710 + 5420 = 8130 \;(kg) \)

Trong kho còn lại số ki-lô-gam cà phê là:

\(23 450 – 8130 = 15 320\; (kg)\)

                                      Đáp số: 15 320 kg cà phê

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K15 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close