Trắc nghiệm Bài 7: Hỗn số Toán 6 Chân trời sáng tạoĐề bài
Câu 1 :
Viết phân số \(\dfrac{4}{3}\) dưới dạng hỗn số ta được
Câu 2 :
Hỗn số \( - 2\dfrac{3}{4}\) được viết dưới dạng phân số là
Câu 3 :
Chọn câu đúng.
Câu 4 :
Dùng hỗn số viết thời gian ở đồng hồ trong các hình vẽ, ta được lần lượt các hỗn số là:
Câu 5 :
Sắp xếp các khối lượng sau theo thứ tự từ lớn đến nhỏ: \(3\dfrac{3}{4}\) tạ; \(\dfrac{{377}}{{100}}\) tạ; \(\dfrac{7}{2}\) tạ; \(3\dfrac{{45}}{{100}}\) tạ; \(365\) kg.
Câu 6 :
Dùng phân số hoặc hỗn số (nếu có thể) để viết các đại lượng diện tích dưới đây theo mét vuông, ta được: a) \(125\,d{m^2}\) b) \(218\,c{m^2}\) c) \(240\,d{m^2}\) d) \(34\,c{m^2}\)
Câu 7 :
Hai xe ô tô cùng đi được quãng đường 100 km, xe taxi chạy trong \(1\dfrac{1}{5}\) giờ và xe tải chạy trong 70 phút. So sánh vận tốc hai xe.
Câu 8 :
Viết 2 giờ 15 phút dưới dạng hỗn số với đơn vị là giờ:
Câu 9 :
Tính \(\left( { - 2\dfrac{1}{4}} \right) + \dfrac{5}{2}\)
Câu 10 :
Tìm \(x\) biết \(2\dfrac{x}{7} = \dfrac{{75}}{{35}}\)
Câu 11 :
Kết quả của phép tính \(\left( { - 1\dfrac{1}{3}} \right) + 2\dfrac{1}{2}\) bằng
Câu 12 :
Giá trị nào dưới đây của \(x\) thỏa mãn \(x - 3\dfrac{1}{2}x = - \dfrac{{20}}{7}?\)
Câu 13 :
Chọn câu đúng.
Câu 14 :
Tính hợp lý \(A = \left( {4\dfrac{5}{{17}} - 3\dfrac{4}{5} + 8\dfrac{{15}}{{29}}} \right) - \left( {3\dfrac{5}{{17}} - 6\dfrac{{14}}{{29}}} \right)\) ta được
Câu 15 :
Tính giá trị biểu thức \(M = 60\dfrac{7}{{13}}.x + 50\dfrac{8}{{13}}.x - 11\dfrac{2}{{13}}.x\) biết \(x = - 8\dfrac{7}{{10}}\)
Câu 16 :
Tìm số tự nhiên \(x\) sao cho: \(6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\).
Lời giải và đáp án
Câu 1 :
Viết phân số \(\dfrac{4}{3}\) dưới dạng hỗn số ta được
Đáp án : D Phương pháp giải :
+ Nếu phân số dương lớn hơn $1,$ ta có thể viết nó dưới dạng hỗn số bằng cách: chia tử cho mẫu, thương tìm được là phần nguyên của hỗn số, số dư là tử của phân số kèm theo, còn mẫu vẫn là mẫu đã cho. Lời giải chi tiết :
Ta có: \(4:3\) bằng $1$ (dư \(1\) ) nên \(\dfrac{4}{3} = 1\dfrac{1}{3}\)
Câu 2 :
Hỗn số \( - 2\dfrac{3}{4}\) được viết dưới dạng phân số là
Đáp án : B Phương pháp giải :
Quy tắc đổi hỗn số: Đối với các hỗn số có dấu \('' - ''\) đằng trước thì ta chỉ cần đổi phần hỗn số dương theo quy tắc thông thường rồi viết thêm dấu \('' - ''\) đằng trước phân số tìm được, tuyệt đối không lấy phần số nguyên âm nhân với mẫu rồi cộng tử số. Lời giải chi tiết :
\( - 2\dfrac{3}{4} = - \dfrac{{2.4 + 3}}{4} = - \dfrac{{11}}{4}\)
Câu 3 :
Chọn câu đúng.
Đáp án : C Phương pháp giải :
Sử dụng quy tắc đổi hỗn số ra phân số: Muốn viết một hỗn số dưới dạng một phân số, ta nhân phần nguyên với mẫu rồi cộng với tử, kết quả tìm được là tử của phân số, còn mẫu vẫn là mẫu đã cho. Lời giải chi tiết :
Đáp án A: \(\dfrac{1}{{19}} + \dfrac{1}{{20}} = \dfrac{{20}}{{19.20}} + \dfrac{{19}}{{19.20}}\) \( = \dfrac{{19 + 20}}{{19.20}} \ne \dfrac{{19.20}}{{19 + 20}}\) Nên A sai. Đáp án B: \(6\dfrac{{23}}{{11}} = \dfrac{{6.11 + 23}}{{11}} \ne \dfrac{{6.23 + 11}}{{11}}\) nên B sai. Đáp án C: \(a\dfrac{a}{{99}} = \dfrac{{a.99 + a}}{{99}}\)\( = \dfrac{{a.\left( {99 + 1} \right)}}{{99}} = \dfrac{{100a}}{{99}}\) nên C đúng. Đáp án D: \(1\dfrac{{15}}{{23}} = \dfrac{{1.23 + 15}}{{15}} \ne \dfrac{{1.23}}{{15}}\) nên D sai.
Câu 4 :
Dùng hỗn số viết thời gian ở đồng hồ trong các hình vẽ, ta được lần lượt các hỗn số là:
Đáp án : A Phương pháp giải :
Hỗn số gồm: Phần nguyên = số giờ Phần phân số = Số phút: 60 Lời giải chi tiết :
Hình a: \(2\dfrac{1}{3}\) Hình b: \(4\dfrac{5}{6}\) Hình c: \(6\dfrac{1}{6}\) Hình d: \(9\dfrac{1}{2}\) Vậy ta được các hỗn số: \(2\dfrac{1}{3}\); \(4\dfrac{5}{6}\); \(6\dfrac{1}{6}\); \(9\dfrac{1}{2}\).
Câu 5 :
Sắp xếp các khối lượng sau theo thứ tự từ lớn đến nhỏ: \(3\dfrac{3}{4}\) tạ; \(\dfrac{{377}}{{100}}\) tạ; \(\dfrac{7}{2}\) tạ; \(3\dfrac{{45}}{{100}}\) tạ; \(365\) kg.
Đáp án : C Phương pháp giải :
Đổi các khối lượng ra các phân số có cùng đơn vị đo khối lượng, sau đó sắp xếp các phân số đó theo thứ tự từ lớn đến nhỏ. Lời giải chi tiết :
Ta có: \(3\dfrac{3}{4}\) tạ = \(\dfrac{{15}}{4}\) tạ = \(\dfrac{{375}}{{100}}\) tạ. \(\dfrac{7}{2}\) tạ = \(\dfrac{{350}}{{100}}\) tạ \(3\dfrac{{45}}{{100}}\) tạ = \(\dfrac{{345}}{{100}}\) tạ \(365\)kg = \(\dfrac{{365}}{{100}}\) tạ => Các khối lượng theo thứ tự từ lớn đến nhỏ là: \(\dfrac{{377}}{{100}}\) tạ ; \(3\dfrac{3}{4}\) tạ; \(365\)kg; \(\dfrac{7}{2}\) tạ; \(3\dfrac{{45}}{{100}}\) tạ.
Câu 6 :
Dùng phân số hoặc hỗn số (nếu có thể) để viết các đại lượng diện tích dưới đây theo mét vuông, ta được: a) \(125\,d{m^2}\) b) \(218\,c{m^2}\) c) \(240\,d{m^2}\) d) \(34\,c{m^2}\)
Đáp án : A Phương pháp giải :
Đổi các khối lượng ra các phân số có cùng đơn vị đo khối lượng Lời giải chi tiết :
a) \(125\,d{m^2} = \dfrac{{125}}{{100}}{m^2} = 1\dfrac{{25}}{{100}}\,{m^2}\) b) \(218\,c{m^2} = \dfrac{{218}}{{10000}}{m^2} = \dfrac{{109}}{{5000}}\,{m^2}\) c) \(240\,d{m^2} = \dfrac{{240}}{{100}}{m^2} = 2\dfrac{{40}}{{100}}\,{m^2}\) d) \(34\,c{m^2} = \dfrac{{34}}{{10000}}{m^2} = \dfrac{{17}}{{5000}}\,{m^2}\) Vậy ta được: \(1\dfrac{{25}}{{100}}\,{m^2}\); \(\dfrac{{109}}{{5000}}\,{m^2}\); \(2\dfrac{{40}}{{100}}\,{m^2}\); \(\dfrac{{17}}{{5000}}\,{m^2}\).
Câu 7 :
Hai xe ô tô cùng đi được quãng đường 100 km, xe taxi chạy trong \(1\dfrac{1}{5}\) giờ và xe tải chạy trong 70 phút. So sánh vận tốc hai xe.
Đáp án : A Phương pháp giải :
Đổi thời gian ra giờ. Tính vận mỗi xe = Quãng đường : thời gian mỗi xe đi => So sánh hỗn số => So sánh được vận tốc hai xe. Lời giải chi tiết :
Đổi 70 phút = \(\dfrac{7}{6}\) giờ Vận tốc của xe taxi là: 100 : \(1\dfrac{1}{5}\) = 100 : \(\dfrac{6}{5}\) = \(\dfrac{{250}}{3}\) = \(83\dfrac{1}{3}\) (km/h) Vận tốc của xe tải là: 100 : \(\dfrac{7}{6}\) = \(\dfrac{{600}}{7}\) = \(85\dfrac{5}{7}\) (km/h) Ta có: \(85\dfrac{5}{7}\) > \(83\dfrac{1}{3}\) nên vận tốc của xe tải lớn hơn vận tốc xe taxi.
Câu 8 :
Viết 2 giờ 15 phút dưới dạng hỗn số với đơn vị là giờ:
Đáp án : C Phương pháp giải :
a giờ b phút = \(a + \dfrac{b}{{60}}\) (giờ) Lời giải chi tiết :
2 giờ 15 phút = \(2 + \dfrac{{15}}{{60}} = 2 + \dfrac{1}{4} = 2\dfrac{1}{4}\) giờ.
Câu 9 :
Tính \(\left( { - 2\dfrac{1}{4}} \right) + \dfrac{5}{2}\)
Đáp án : C Phương pháp giải :
Đổi hỗn số ra phân số rồi thực hiện phép cộng hai phân số. Lời giải chi tiết :
\(\left( { - 2\dfrac{1}{4}} \right) + \dfrac{5}{2} = - \dfrac{9}{4} + \dfrac{5}{2}\)\( = \dfrac{{ - 9}}{4} + \dfrac{{10}}{4} = \dfrac{1}{4}\)
Câu 10 :
Tìm \(x\) biết \(2\dfrac{x}{7} = \dfrac{{75}}{{35}}\)
Đáp án : A Phương pháp giải :
Đổi hỗn số thành phân số, đồng thời rút gọn phân số có thể rút gọn được, từ đó tìm \(x\) Lời giải chi tiết :
\(\begin{array}{l}2\dfrac{x}{7} = \dfrac{{75}}{{35}}\\\dfrac{{2.7 + x}}{7} = \dfrac{{15}}{7}\\14 + x = 15\\x = 15 - 14\\x = 1\end{array}\)
Câu 11 :
Kết quả của phép tính \(\left( { - 1\dfrac{1}{3}} \right) + 2\dfrac{1}{2}\) bằng
Đáp án : B Phương pháp giải :
Đổi hỗn số thành phân số rồi cộng các phân số với nhau. Lời giải chi tiết :
\(\left( { - 1\dfrac{1}{3}} \right) + 2\dfrac{1}{2} = - \dfrac{4}{3} + \dfrac{5}{2}\)\( = \dfrac{{ - 8}}{6} + \dfrac{{15}}{6} = \dfrac{7}{6}\)
Câu 12 :
Giá trị nào dưới đây của \(x\) thỏa mãn \(x - 3\dfrac{1}{2}x = - \dfrac{{20}}{7}?\)
Đáp án : A Phương pháp giải :
Đổi hỗn số ra phân số, đặt \(x\) làm thừa số chung rồi tìm \(x\) theo phương pháp tìm thừa số chưa biết trong một tích. Lời giải chi tiết :
\(\begin{array}{l}x - 3\dfrac{1}{2}x = - \dfrac{{20}}{7}\\x - \dfrac{7}{2}x = - \dfrac{{20}}{7}\\x.\left( {1 - \dfrac{7}{2}} \right) = - \dfrac{{20}}{7}\\x.\left( {\dfrac{{ - 5}}{2}} \right) = \dfrac{{ - 20}}{7}\\x = \dfrac{{ - 20}}{7}:\dfrac{{ - 5}}{2}\\x = \dfrac{{ - 20}}{7}.\dfrac{2}{{ - 5}}\\x = \dfrac{8}{7} \\x= 1\dfrac{1}{7}\end{array}\)
Câu 13 :
Chọn câu đúng.
Đáp án : C Phương pháp giải :
- Thực hiện các phép tính ở mỗi đáp án. - Kết luận. Chú ý: Đổi các hỗn số thành phân số rồi thực hiện cộng, trừ, nhân, chia các phân số. Lời giải chi tiết :
Đáp án A: \(\left( { - 3\dfrac{3}{4}} \right).1\dfrac{1}{2}\)\( = - \dfrac{{15}}{4}.\dfrac{3}{2} = - \dfrac{{45}}{8} = - 5\dfrac{5}{8} \ne - 3\dfrac{3}{8}\) Nên A sai. Đáp án B: \(3\dfrac{3}{4}:1\dfrac{1}{5} = \dfrac{{15}}{4}:\dfrac{6}{5} = \dfrac{{15}}{4}.\dfrac{5}{6}\)\( = \dfrac{{25}}{8} = 3\dfrac{1}{8} \ne 3\dfrac{3}{{20}}\) nên B sai. Đáp án C: \(\left( { - 3} \right) - \left( { - 2\dfrac{2}{5}} \right)\)\( = \left( { - 3} \right) - \left( { - \dfrac{{12}}{5}} \right) = \left( { - 3} \right) + \dfrac{{12}}{5} = \dfrac{{ - 3}}{5}\) Nên C đúng. Đáp án D: \(5\dfrac{7}{{10}}.15 = \dfrac{{57}}{{10}}.15 = \dfrac{{171}}{2} \ne \dfrac{{105}}{2}\) nên D sai.
Câu 14 :
Tính hợp lý \(A = \left( {4\dfrac{5}{{17}} - 3\dfrac{4}{5} + 8\dfrac{{15}}{{29}}} \right) - \left( {3\dfrac{5}{{17}} - 6\dfrac{{14}}{{29}}} \right)\) ta được
Đáp án : B Phương pháp giải :
Phá ngoặc rồi nhóm các hỗn số có tổng hoặc hiệu là một số nguyên để tính toán cho nhanh. Lời giải chi tiết :
\(A = \left( {4\dfrac{5}{{17}} - 3\dfrac{4}{5} + 8\dfrac{{15}}{{29}}} \right) - \left( {3\dfrac{5}{{17}} - 6\dfrac{{14}}{{29}}} \right)\) \(A = 4\dfrac{5}{{17}} - 3\dfrac{4}{5} + 8\dfrac{{15}}{{29}} - 3\dfrac{5}{{17}} + 6\dfrac{{14}}{{29}}\) \(A = \left( {4\dfrac{5}{{17}} - 3\dfrac{5}{{17}}} \right) + \left( {8\dfrac{{15}}{{29}} + 6\dfrac{{14}}{{29}}} \right) - 3\dfrac{4}{5}\) \(A = \left( {4 - 3} \right) + \left( {\dfrac{5}{{17}} - \dfrac{5}{{17}}} \right)\) \( + \left( {8 + 6} \right) + \left( {\dfrac{{15}}{{29}} + \dfrac{{14}}{{29}}} \right) - 3\dfrac{4}{5}\) \(A = 1 + 0 + 14 + 1 - 3\dfrac{4}{5}\) \(A=16-3\dfrac{4}{5}\) \(A = 15\dfrac{5}{5} - 3\dfrac{4}{5} = 12\dfrac{1}{5}\)
Câu 15 :
Tính giá trị biểu thức \(M = 60\dfrac{7}{{13}}.x + 50\dfrac{8}{{13}}.x - 11\dfrac{2}{{13}}.x\) biết \(x = - 8\dfrac{7}{{10}}\)
Đáp án : A Phương pháp giải :
Thu gọn \(M\) rồi thay \(x = - 8\dfrac{7}{{10}}\) vào tính giá trị của \(M\) Lời giải chi tiết :
\(M = 60\dfrac{7}{{13}}.x + 50\dfrac{8}{{13}}.x - 11\dfrac{2}{{13}}.x\) \(M = \left( {60\dfrac{7}{{13}} + 50\dfrac{8}{{13}} - 11\dfrac{2}{{13}}} \right).x\) \(M = \left[ {\left( {60 + 50 - 11} \right) + \left( {\dfrac{7}{{13}} + \dfrac{8}{{13}} - \dfrac{2}{{13}}} \right)} \right].x\) \(M = \left( {99 + 1} \right).x = 100x\) Thay \(x = - 8\dfrac{7}{{10}}\) vào \(M\) ta được: \(M = 100.\left( { - 8\dfrac{7}{{10}}} \right)\) \( = 100.\left( { - \dfrac{{87}}{{10}}} \right) = - 870\)
Câu 16 :
Tìm số tự nhiên \(x\) sao cho: \(6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\).
Đáp án : A Phương pháp giải :
Rút gọn vế trái và vế phải bằng cách đưa hỗn số về phân số. Từ đó chọn số phù hợp. Lời giải chi tiết :
\(\begin{array}{l}6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\\\dfrac{{19}}{3}:\dfrac{{38}}{9} < x < \dfrac{{92}}{9} + \dfrac{{12}}{5} - \dfrac{{56}}{9}\\\dfrac{3}{2} < x < \dfrac{{32}}{5}\end{array}\) Ta có: \(\begin{array}{l}\dfrac{3}{2} < x < \dfrac{{32}}{5}\\1,5 < x < 6,4\end{array}\) Vì x là số tự nhiên nên \(x \in \left\{ {2;3;4;5;6} \right\}\).
|