Trắc nghiệm Bài 4: Đoạn thẳng. Độ dài đoạn thẳng Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

Kể tên các đoạn thẳng có trong hình vẽ dưới đây

  • A

    $MN;\,MQ;NQ;ML;LP;MP;NP;QL$   

  • B

    $MN;QL;MQ;NQ;ML;LP;MP$         

  • C

    $MN;\,MQ;NQ;ML;QL;MP;NP$                

  • D

    $MN;\,MQ;ML;MP;NP$

Câu 2 :

Nếu một đoạn thẳng cắt một tia thì đoạn thẳng và tia có bao nhiêu điểm chung?

  • A

    $1$               

  • B

    $2$ 

  • C

    $0$     

  • D

    Vô số

Câu 3 :

Cho $10$ điểm phân biệt trong đó không có ba điểm nào thẳng hàng, cứ qua hai điểm ta vẽ một đoạn thẳng. Hỏi vẽ được tất cả bao nhiêu đoạn thẳng?

  • A

    $10$   

  • B

    $90$  

  • C

    $40$   

  • D

    $45$

Câu 4 :

Cho $n$ điểm phân biệt $\left( {n \ge 2;\,n \in N} \right)$ trong đó không có ba điểm nào thẳng hàng. Vẽ các đoạn thẳng nối hai trong $n$ điểm đó. Có tất cả $28$ đoạn thẳng. Hãy tìm $n.$

  • A

    $n = 9.$

  • B

    $n = 7.$          

  • C

    $n = 8.$

  • D

    $n = 6.$

Câu 5 :

Đường thẳng \(xx'\) cắt bao nhiêu đoạn thẳng trên hình vẽ sau

  • A

    $3$

  • B

    $4$

  • C

    $5$             

  • D

    $6$

Câu 6 :

Hãy chọn hình vẽ đúng theo diễn đạt sau: 
Vẽ đoạn thẳng $AB$ không cắt đoạn thẳng $CD$ nhưng đường thẳng $AB$ cắt đoạn thẳng $CD.$

  • A
  • B
  • C
  • D
Câu 7 :

Cho $E$ là điểm nằm giữa hai điểm $I$ và $K.$ Biết rằng $IE = 4cm,EK = 10cm.$Tính độ dài đoạn thẳng $IK.$

  • A

    $4cm$

  • B

    $7cm$

  • C

    $6cm$

  • D

    $14cm$

Câu 8 :

Gọi $I$ là một điểm thuộc đoạn thẳng $MN.$ Khi $IM = 4cm,MN = 7cm$ thì độ dài của đoạn thẳng $IN$ là?

  • A

    $3cm$

  • B

    $11cm$          

  • C

    $1,5cm$

  • D

    $5cm$

Câu 9 :

Cho đoạn thẳng $AB$ có độ dài bằng $10cm.$ Điểm $M$ nằm giữa hai điểm $A$ và $B$.  Biết rằng $MA = MB + 2cm.$ Tính độ dài các đoạn thẳng $MA;MB.$

  • A

    $MA = 8cm;MB = 2cm.$     

  • B

    $MA = 7cm;MB = 5cm.$

  • C

    $MA = 6cm;MB = 4cm.$             

  • D

    $MA = 4cm;MB = 6cm.$

Câu 10 :

Cho các đoạn thẳng \(AB = 4cm;\,MN = 5cm;\,EF = 3\,cm;\,PQ = 4cm;\,IK = 5\,cm\). Chọn đáp án sai.

  • A

    \(AB < MN\)          

  • B

    $EF < IK$ 

  • C

    \(AB = PQ\)      

  • D

    \(AB = EF\)

Lời giải và đáp án

Câu 1 :

Kể tên các đoạn thẳng có trong hình vẽ dưới đây

  • A

    $MN;\,MQ;NQ;ML;LP;MP;NP;QL$   

  • B

    $MN;QL;MQ;NQ;ML;LP;MP$         

  • C

    $MN;\,MQ;NQ;ML;QL;MP;NP$                

  • D

    $MN;\,MQ;ML;MP;NP$

Đáp án : A

Phương pháp giải :

Sử dụng định nghĩa đoạn thẳng: “Đoạn thẳng \(AB\)  là hình gồm điểm A, điểm B và tất cả các điểm nằm giữa A và B” để xác định các đoạn thẳng có trên hình vẽ.

Lời giải chi tiết :

Các đoạn thẳng có trên hình vẽ là:

$MN;\,MQ;NQ;ML;LP;MP;NP;QL$

Câu 2 :

Nếu một đoạn thẳng cắt một tia thì đoạn thẳng và tia có bao nhiêu điểm chung?

  • A

    $1$               

  • B

    $2$ 

  • C

    $0$     

  • D

    Vô số

Đáp án : A

Lời giải chi tiết :

Nếu một đoạn thẳng cắt một tia thì đoạn thẳng và tia có duy nhất một điểm chung.

Câu 3 :

Cho $10$ điểm phân biệt trong đó không có ba điểm nào thẳng hàng, cứ qua hai điểm ta vẽ một đoạn thẳng. Hỏi vẽ được tất cả bao nhiêu đoạn thẳng?

  • A

    $10$   

  • B

    $90$  

  • C

    $40$   

  • D

    $45$

Đáp án : D

Phương pháp giải :

Sử dụng cách tính số đoạn thẳng:

Với \(n\) điểm cho trước \(\left( {n \in N;\,n \ge 2} \right)\) và không có ba điểm nào thẳng hàng thì số đoạn thẳng vẽ được là \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) .

Lời giải chi tiết :

Số đoạn thẳng cần tìm là

$\dfrac{{10.\left( {10 - 1} \right)}}{2} = 45$ đoạn thẳng

Câu 4 :

Cho $n$ điểm phân biệt $\left( {n \ge 2;\,n \in N} \right)$ trong đó không có ba điểm nào thẳng hàng. Vẽ các đoạn thẳng nối hai trong $n$ điểm đó. Có tất cả $28$ đoạn thẳng. Hãy tìm $n.$

  • A

    $n = 9.$

  • B

    $n = 7.$          

  • C

    $n = 8.$

  • D

    $n = 6.$

Đáp án : C

Phương pháp giải :

Sử dụng công thức tính số đoạn thẳng:

Với \(n\) điểm cho trước \(\left( {n \in N;\,n \ge 2} \right)\) và không có ba điểm nào thẳng hàng thì số đoạn thẳng vẽ được là \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) .

Từ đó tìm ra $n.$

Lời giải chi tiết :

Số đoạn thẳng tạo thành từ $n$ điểm phân biệt trong đó không có ba điểm nào thẳng hàng là $\dfrac{{n\left( {n - 1} \right)}}{2}$  $\left( {n \ge 2;\,n \in N} \right)$

Theo đề bài có $28$ đoạn thẳng được tạo thành nên ta có $\dfrac{{n\left( {n - 1} \right)}}{2} = 28 \Rightarrow n\left( {n - 1} \right) = 56 = 8.7$

Nhận thấy $\left( {n - 1} \right)$ và $n$ là hai số tự nhiên liên tiếp, suy ra $n = 8.$

Câu 5 :

Đường thẳng \(xx'\) cắt bao nhiêu đoạn thẳng trên hình vẽ sau

  • A

    $3$

  • B

    $4$

  • C

    $5$             

  • D

    $6$

Đáp án : C

Phương pháp giải :

Sử dụng kiến thức về đường thẳng và đoạn thẳng cắt nhau:

“Nếu một đoạn thẳng chỉ có một điểm chung với đường thẳng thì chúng cắt nhau.”

Lời giải chi tiết :

Đường thẳng $xx'$ cắt năm đoạn thẳng $OA;OB;AB$; $MA;MB$

Câu 6 :

Hãy chọn hình vẽ đúng theo diễn đạt sau: 
Vẽ đoạn thẳng $AB$ không cắt đoạn thẳng $CD$ nhưng đường thẳng $AB$ cắt đoạn thẳng $CD.$

  • A
  • B
  • C
  • D

Đáp án : C

Phương pháp giải :

Sử dụng kiến thức:

Nếu một đoạn thẳng chỉ có một điểm chung với đường thẳng, tia hoặc đoạn thẳng khác thì chúng cắt nhau.

Lời giải chi tiết :

Đoạn thẳng $AB$ không cắt đoạn thẳng $CD$ nhưng đường thẳng $AB$ cắt đoạn thẳng $CD$ nghĩa là đoạn thẳng $AB$ không có điểm chung với đoạn thẳng $CD$ và đường thẳng  $AB$có duy nhất một điểm chung với đoạn thẳng $CD.$

Hình vẽ thể hiện đúng diễn đạt trên là

Câu 7 :

Cho $E$ là điểm nằm giữa hai điểm $I$ và $K.$ Biết rằng $IE = 4cm,EK = 10cm.$Tính độ dài đoạn thẳng $IK.$

  • A

    $4cm$

  • B

    $7cm$

  • C

    $6cm$

  • D

    $14cm$

Đáp án : D

Phương pháp giải :

$E$ là điểm nằm giữa hai điểm $I$ và $K$ nên ta có công thức cộng đoạn thẳng $IE + EK = IK$. Biết độ dài $IL, LK$, thay số vào ta tính được độ dài đoạn thẳng $IK.$

Lời giải chi tiết :

Vì $E$ là điểm nằm giữa hai điểm $I$ và $K$ nên ta có $IE + EK = IK$

Hay $4 + 10 = IK$ suy ra $IK = 14\,cm.$

Câu 8 :

Gọi $I$ là một điểm thuộc đoạn thẳng $MN.$ Khi $IM = 4cm,MN = 7cm$ thì độ dài của đoạn thẳng $IN$ là?

  • A

    $3cm$

  • B

    $11cm$          

  • C

    $1,5cm$

  • D

    $5cm$

Đáp án : A

Phương pháp giải :

+ Chỉ ra rằng $I$ nằm giữa hai điểm $M;N$ dựa vào kiến thức: “Nếu điểm $M$ thuộc đoạn thẳng $AB$ thì điểm $M$ nằm giữa hai điểm $A$ và $B$”

+  Sử dụng công thức cộng đoạn thẳng: $MI + IN = MN$ để suy ra độ dài đoạn thẳng chưa biết.

Lời giải chi tiết :

Vì $I$ là một điểm thuộc đoạn thẳng $MN$ nên $I$ là điểm nằm giữa hai điểm $M;N$.

Do đó ta có $MI + IN = MN$ mà $IM = 4cm,MN = 7cm$ nên  $4 + IN = 7 \Rightarrow IN = 7 - 4$$ \Rightarrow IN = 3\,cm.$

Câu 9 :

Cho đoạn thẳng $AB$ có độ dài bằng $10cm.$ Điểm $M$ nằm giữa hai điểm $A$ và $B$.  Biết rằng $MA = MB + 2cm.$ Tính độ dài các đoạn thẳng $MA;MB.$

  • A

    $MA = 8cm;MB = 2cm.$     

  • B

    $MA = 7cm;MB = 5cm.$

  • C

    $MA = 6cm;MB = 4cm.$             

  • D

    $MA = 4cm;MB = 6cm.$

Đáp án : C

Phương pháp giải :

Sử dụng công thức cộng đoạn thẳng $AM + MB = AB$ và dữ kiện đề bài để tìm độ dài hai đoạn thẳng $MA;MB.$

Lời giải chi tiết :

Vì điểm $M$ nằm giữa hai điểm $A$ và $B$ nên ta có $MA + MB = AB$ (1)

Thay $MA = MB + 2$ vào (1) ta được  $MB + 2 + MB = AB$ mà $AB = 10cm$

Suy ra $2MB + 2 = 10 \Rightarrow 2MB = 10 - 2 \Rightarrow 2MB = 8$$ \Rightarrow MB = 8:2 = 4cm$

Nên $MA = MB + 2 = 4 + 2 = 6cm$.

Vậy $MA = 6cm;MB = 4cm.$

Câu 10 :

Cho các đoạn thẳng \(AB = 4cm;\,MN = 5cm;\,EF = 3\,cm;\,PQ = 4cm;\,IK = 5\,cm\). Chọn đáp án sai.

  • A

    \(AB < MN\)          

  • B

    $EF < IK$ 

  • C

    \(AB = PQ\)      

  • D

    \(AB = EF\)

Đáp án : D

Phương pháp giải :

Sử dụng kiến thức về so sánh hai đoạn thẳng

- Hai đoạn thẳng bằng nhau nếu có cùng độ dài.

- Đoạn thẳng lớn hơn nếu có độ dài lớn hơn.

Lời giải chi tiết :

+ Đáp án A: \(AB < MN\)  là đúng vì $AB = 4cm < 5cm = MN$.

+ Đáp án B: $EF < IK$ là đúng vì $EF = 3cm < 5cm = IK$

+ Đáp án C: \(AB = PQ\) là đúng vì hai đoạn cùng có độ dài $4cm$

+ Đáp án D: \(AB = EF\)  là sai vì $AB = 4cm > 3cm = EF$.

close