Trắc nghiệm Bài 6: Chia hết và chia có dư. Tính chất chia hết của một tổng Toán 6 Chân trời sáng tạoĐề bài
Câu 1 :
Nếu $a$ không chia hết cho $2$ và $b$ chia hết cho $2$ thì tổng \(a + b\)
Câu 2 :
Tổng nào sau đây chia hết cho $7$
Câu 3 :
Khẳng định nào sau đây đúng?
Câu 4 :
1560:15 bằng
Câu 5 :
Khẳng định nào sau đây sai?
Câu 6 :
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý. Khẳng định nào sau đây chưa đúng? (Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
Câu 7 :
Nếu \(x \, \vdots \, 2\) và \(y \, \vdots \, 4\) thì tổng \(x + y\) chia hết cho
Câu 8 :
Nếu \(x \, \vdots \, 12\) và \(y \, \vdots \, 8\) thì hiệu \(x - y\) chia hết cho
Câu 9 :
Chọn câu sai.
Câu 10 :
Cho tổng \(M = 75 + 120 + x\) . Với giá trị nào của \(x\) dưới đây thì \(M \, \vdots \, 3?\)
Lời giải và đáp án
Câu 1 :
Nếu $a$ không chia hết cho $2$ và $b$ chia hết cho $2$ thì tổng \(a + b\)
Đáp án : B Phương pháp giải :
Tính chất 2: Nếu chỉ có một số hạng của tổng không chia hết cho một số còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó. Lời giải chi tiết :
Theo tính chất 2: nếu $a$ không chia hết cho $2$và $b$ chia hết cho $2$ thì \(a + b\) không chia hết cho $2.$
Câu 2 :
Tổng nào sau đây chia hết cho $7$
Đáp án : A Phương pháp giải :
Tính chất 1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. Lời giải chi tiết :
Ta có: \(49 \vdots 7;\,\,\,70 \vdots 7 \Rightarrow \left( {49 + 70} \right) \vdots 7\) (theo tính chất 1)
Câu 3 :
Khẳng định nào sau đây đúng?
Đáp án : A Phương pháp giải :
Cho hai số tự nhiên \(a\) và \(b,\) trong đó \(b \ne 0,\) nếu có số tự nhiên \(x\) sao cho \(b.x = a\) thì ta nói \(a\) chia hết cho \(b\) và ta có phép chia hết \(a:b = x\), kí hiệu là \(a \vdots b\). Lời giải chi tiết :
Ta có: 25.10=250 nên \(250 \vdots 25\)
Câu 4 :
1560:15 bằng
Đáp án : B Phương pháp giải :
Đặt tính rồi tính. Lời giải chi tiết :
Vậy \(1560 = 15.104\). Hay thương của phép chia 1560 cho 15 là 104.
Câu 5 :
Khẳng định nào sau đây sai?
Đáp án : D Phương pháp giải :
Đặt tính rồi tính. Lời giải chi tiết :
199 đều không chia hết cho 2, 3, 7 và 11 nên \(199\not \vdots 11\)
Câu 6 :
Cho \(a \vdots m\) và \(b \vdots m\) và \(c \vdots m\) với m là số tự nhiên khác 0. Các số a,b,c là số tự nhiên tùy ý. Khẳng định nào sau đây chưa đúng? (Xét trong tập số tự nhiên, số bị trừ phải lớn hơn hoặc bằng số trừ)
Đáp án : B Phương pháp giải :
Tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. \(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a + b} \right) \vdots m\) \(a \vdots m\) và \(b \vdots m\) \( \Rightarrow \left( {a - b} \right) \vdots m\) với \(\left( {a \ge b} \right)\) \(a \vdots m;b \vdots m;c \vdots m \Rightarrow \left( {a + b + c} \right) \vdots m\) Lời giải chi tiết :
\(\left( {a - b} \right) \vdots m\) sai vì thiếu điều kiện \(a \ge b\)
Câu 7 :
Nếu \(x \, \vdots \, 2\) và \(y \, \vdots \, 4\) thì tổng \(x + y\) chia hết cho
Đáp án : A Phương pháp giải :
Tính chất 1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. Lời giải chi tiết :
Ta có: \(x\,\, \vdots \,\,2;\,\,y\,\, \vdots \,\,4 \Rightarrow y\,\, \vdots \,\,2 \Rightarrow \left( {x + y} \right)\,\, \vdots \,\,2\)
Câu 8 :
Nếu \(x \, \vdots \, 12\) và \(y \, \vdots \, 8\) thì hiệu \(x - y\) chia hết cho
Đáp án : C Phương pháp giải :
Nếu số hạng của một hiệu đều chia hết cho cùng một số thì hiệu chia hết cho số đó. Lời giải chi tiết :
Ta có: \(\left\{ \begin{array}{l}x \, \vdots \, 12 \Rightarrow x \, \vdots \, 4\\y \, \vdots \, 8 \Rightarrow y \, \vdots \, 4\end{array} \right.\) . Vì \(x \, \vdots \, 4;y \, \vdots \, 4 \Rightarrow \left( {x - y} \right) \, \vdots \, 4\) .
Câu 9 :
Chọn câu sai.
Đáp án : C Phương pháp giải :
+ TC1: Nếu số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. + TC2: Nếu chỉ có một số hạng của tổng không chia hết cho một số còn các số hạng khác đều chia hết cho số đó thì tổng không chia hết cho số đó. Lời giải chi tiết :
+) Vì \(49\,\, \vdots \,\,7;\,\,105\,\, \vdots \,\,7;\,\,399\,\, \vdots \,\,7 \Rightarrow \left( {49 + 105 + 399} \right)\,\, \vdots \,\,7\) ( theo tính chất 1) nên A đúng +) Vì \(48\,\, \vdots \,\,8;\,\,120\,\, \vdots\,\, 8\) mà 84 không chia hết cho 8 nên \(84 + 48 + 120\) không chia hết cho 8 nên B đúng +) Vì \(18\,\, \vdots\,\, 9;\,\,54\,\, \vdots\,\, 9\) mà 12 không chia hết cho 9 nên \(18 + 54 + 12\) không chia hết cho 9 nên C sai, D đúng.
Câu 10 :
Cho tổng \(M = 75 + 120 + x\) . Với giá trị nào của \(x\) dưới đây thì \(M \, \vdots \, 3?\)
Đáp án : D Phương pháp giải :
Sử dụng tính chất 1: Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó. \(a\, \vdots \,m;\,b\, \vdots \,m;\,c\, \vdots \,m \Rightarrow \left( {a + b + c} \right) \vdots \,m\) Lời giải chi tiết :
Vì \(75\, \vdots \,3;\,120\, \vdots \,3\) nên để \(M = 75 + 120 + x\) chia hết cho \(3\) thì \(x\, \vdots \,3\) nên ta chọn \(x = 12.\)
|