Trắc nghiệm Bài 1. Viết phương trình dao động điều hòa - Vật Lí 12

Đề bài

Câu 1 :

Một vật nhỏ dao động điều hòa dọc theo trục Ox với biên độ $5cm$, chu kỳ $2s$. Tại thời điểm $t = 0$, vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là

  • A

    $x = 5cos(2πt – π/2) (cm)$

  • B

    $x = 5cos(2πt + π/2) (cm)$

  • C

    $x = 5cos(πt – π/2) (cm)$

  • D

    $x = 5cos(πt + π/2) (cm)$

Quảng cáo
decumar
Câu 2 :

Một chất điểm chuyển động tròn đều trong mặt phẳng thẳng đứng, có bán kính quỹ đạo là $8cm$, bắt đầu từ vị trí thấp nhất của đường tròn theo chiều ngược chiều kim đồng hồ với tốc độ không đổi là $16π cm/s$. Hình chiếu của chất điểm lên trục Ox nằm ngang, đi qua tâm O của đường tròn, nằm trong mặt phẳng quỹ đạo có chiều từ trái qua phải là

  • A

    ${\text{x}} = 16c{\text{os}}\left( {2\pi t - \frac{\pi }{2}} \right)(cm)$

  • B

    ${\text{x}} = 16c{\text{os}}\left( {2\pi t + \frac{\pi }{2}} \right)(cm)$

  • C

    ${\text{x}} = 8c{\text{os}}\left( {2\pi t + \frac{\pi }{2}} \right)(cm)$

  • D

    ${\text{x}} = 8c{\text{os}}\left( {2\pi t - \frac{\pi }{2}} \right)(cm)$

Câu 3 :

Một chất điểm dao động điều hoà với phương trình dạng \(x = cos\left( {2\pi t + \frac{\pi }{6}} \right)\left( {cm,{\text{ }}s} \right)\). Lấy ${\pi ^2} = 10$, biểu thức gia tốc tức thời của chất điểm là:

  • A

    \(a = - 2\pi cos\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • B

    \(a = 40sin\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • C

    \(a = - 40cos\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • D

    \(a = 2\pi sin\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

Câu 4 :

Phương trình dao động điều hòa có dạng \(x = Acos\omega t\). Gốc thời gian  được chọn là:

  • A

    Lúc vật có li độ $x = +A$

  • B

    Lúc vật đi qua vị trí cân bằng theo chiều dương.

  • C

    Lúc vật có li độ $x = - A$

  • D

    Lúc vật đi qua vị trí cân bằng theo chiều âm.

Câu 5 :

Phương trình dao động của một vật có dạng $x = A\sin (\omega t + \frac{\pi }{4})$.Chọn kết luận đúng?

  • A

    Vật dao động với biên độ $A$

  • B

    Vật dao động với pha ban đầu \(\dfrac{{3\pi }}{4}\)

  • C

    Vật dao động với biên độ $2A$

  • D

    Vật dao động với biên độ $A/2$

Câu 6 :

Một vật nhỏ dao động theo phương trình $x = Acos(ωt + φ) (cm)$. Tại thời điểm ban đầu, vật đi qua vị trí có li độ $x < 0$, hướng ra xa vị trí cân bằng. Giá trị của $φ$ thỏa mãn:

  • A

    \(\frac{\pi }{2} < \varphi  < \pi \)

  • B

    $\frac{\pi }{2} < \varphi  < 0$

  • C

    $ - \pi  < \varphi  <  - \frac{\pi }{2}$ 

  • D

    $0 < \varphi  < \frac{\pi }{2}$

Câu 7 :

Một vật dao động điều hòa với biên độ $A = 8 cm$. Tại thời điểm $t = 0$, vật có li độ $x = -4 cm$ và đang đi theo chiều âm của trục $Ox$. Pha ban đầu của dao động bằng:

  • A

    \( - \dfrac{\pi }{3}\)

  • B

    \( \dfrac{\pi }{3}\)

  • C

    \( - \dfrac{2\pi }{3}\)

  • D

    \( \dfrac{2\pi }{3}\)

Câu 8 :

Cho một chất điểm dao động điều hòa với tần số $1Hz$, thời điểm đầu vật qua vị trí $x = 5cm$ theo chiều dương với tốc độ \(v = 10\pi cm/s\). Viết phương trình dao động.

  • A

    \(x{\text{ }} = {\text{ }}5\sqrt 2 sin(2\pi t{\text{ }} + \frac{\pi }{4}){\text{ }}cm\)

  • B

    \(x = 5\cos (2\pi t - \frac{\pi }{6})cm\)

  • C

    \(x{\text{ }} = {\text{ }}5sin(2\pi t{\text{ }} + \frac{\pi }{4}){\text{ }}cm\)

  • D

    \(x{\text{ }} = {\text{ }}5\sqrt 2 sin(2\pi t{\text{ }} - \frac{\pi }{6}){\text{ }}cm\)

Câu 9 :

Một vật dao động điều hoà dọc theo trục $Ox$ nằm ngang, gốc $O$ và mốc thế năng ở vị trí cân bằng. Thời gian vật đi từ VTCB đến $A$ hết $0,5s$ và đi hết quãng đường $4cm$ Chọn \(t=0\) lúc vật qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là:

  • A

    \(x = 2c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

  • B

    \(x = 4c{\rm{os}}\left( {2\pi t - \frac{\pi }{2}} \right)cm\)

  • C

    \(x = 2c{\rm{os}}\left( {\pi t + \frac{\pi }{2}} \right)cm\)

  • D

    \(x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

Câu 10 :

Một vật dao động điều hoà có đồ thị như hình vẽ.

Phương trình dao động của vật là:

  • A

    \(x = 4c{\rm{os}}\left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)cm\)   

  • B

     \(x = 4c{\rm{os}}\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)cm\)

  • C

    \(x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{6}} \right)cm\)

  • D

    \(x = 4c{\rm{os}}\left( {\frac{{2\pi }}{3}t - \frac{{5\pi }}{6}} \right)cm\)

Câu 11 :

Vật nặng dao động điều hòa với \(\omega = 10\sqrt 5 rad/s\). Chọn gốc tọa độ trùng với vị trí cân bằng của vật. Biết rằng tại thời điểm ban đầu vật đi qua li độ $x = 2cm$ với vận tốc \(v = 20\sqrt {15} cm/s\). Phương trình dao động của vật là:

  • A

    \(x = 4c{\rm{os}}\left( {10\sqrt 5 t + \frac{\pi }{3}} \right)cm\)

  • B

    \(x = 2\sqrt 2 c{\rm{os}}\left( {10\sqrt 5 t + \frac{\pi }{3}} \right)cm\)

  • C

    \(x = 4c{\rm{os}}\left( {10\sqrt 5 t - \frac{\pi }{3}} \right)cm\) 

  • D

    \(x = 5\sin \left( {10\sqrt 5 t + \frac{\pi }{2}} \right)cm\)

Câu 12 :

Một vật dao động điều hòa với biên độ $A = 8cm$ và $ω = π rad/s$. Tại thời điểm ban đầu vật qua vị trí có li độ \({x_0} = {\text{ }}4cm\) theo chiều âm. Phương trình dao động của vật là: 

  • A

    \(x = 8cos\left( {\pi t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

  • B

    \(x = 8cos\left( {\pi t - \frac{{2\pi }}{3}} \right)(cm)\)

  • C

    \(x = 8cos\left( {\pi t + \frac{\pi }{3}} \right)\left( {cm} \right)\)

  • D

    \(x = 8cos\left( {\pi t + \frac{{2\pi }}{3}} \right)\left( {cm} \right)\)

Câu 13 :

Một vật dao động điều hòa trên quỹ đạo dài $8cm$ với chu kì $T=2s$. Chọn gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là :

  • A

    $x{\rm{ }} = {\rm{ }}8cos\left( {2\pi t - \frac{\pi }{2}} \right)cm$

  • B

    $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t + \frac{\pi }{2}} \right)cm$

  • C

    $x{\rm{ }} = {\rm{ }}8cos\left( {2\pi t + \frac{\pi }{2}} \right)cm$

  • D

    $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t - \frac{\pi }{2}} \right)cm$

Câu 14 :

Một chất điểm dao động điều hòa có đồ thị biểu diễn sự phụ thuộc vào thời gian của li độ như hình vẽ. Phương trình dao động của vật là:

  • A

    \(x = 10cos\left( {\frac{{11\pi }}{6}t + \frac{{2\pi }}{3}} \right)cm\)

  • B

    \(x{\rm{ }} = {\rm{ }}10cos\left( {\frac{{11\pi }}{6}t - \frac{{2\pi }}{3}} \right)cm\)

  • C

    \(x{\rm{ }} = {\rm{ }}10cos\left( {2\pi t + \frac{\pi }{3}} \right)cm\)

  • D

    \(x{\rm{ }} = {\rm{ }}10cos\left( {\frac{{5\pi }}{6}t - \frac{\pi }{3}} \right)cm\)

Câu 15 :

Đồ thị vận tốc của một vật cho ở hình bên, phương trình nào dưới đây là phương trình dao động của vật:

  • A

    \(x = 6c{\rm{os}}\left( {\pi t + \frac{\pi }{2}} \right)cm\)

  • B

    \(x = 6c{\rm{os}}\left( {\pi t} \right)cm\)

  • C

    \(x = 6c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

  • D

    \(x = 6\sin \left( {\pi t} \right)cm\)

Câu 16 :

Chọn phương trình biểu thị cho dao động điều hòa:

  • A

    x = A(t)cos(ωt + b) cm

  • B

    x = Acos(ωt + φ(t)) cm

  • C

    x = Acos(ωt + φ) + b (cm)

  • D

    x = Acos(ωt + bt) cm.

Câu 17 :

Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa ?

  • A

    x = 2sin(2πt + π/6) (cm)

  • B

    x = 3tcos(100πt + π/6)  (cm)

  • C

    x = - 3cos5πt  (cm)

  • D

    x = 1 + 5cosπt  (cm)

Câu 18 :

Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa ?

  • A

    x = 5cosπt + 1(cm)

  • B

    x = 3tcos(100πt + π/6)cm

  • C

    x = 2sin2(2πt + π/6)cm

  • D

    x = 3sin5πt + 3cos5πt (cm)

Lời giải và đáp án

Câu 1 :

Một vật nhỏ dao động điều hòa dọc theo trục Ox với biên độ $5cm$, chu kỳ $2s$. Tại thời điểm $t = 0$, vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là

  • A

    $x = 5cos(2πt – π/2) (cm)$

  • B

    $x = 5cos(2πt + π/2) (cm)$

  • C

    $x = 5cos(πt – π/2) (cm)$

  • D

    $x = 5cos(πt + π/2) (cm)$

Đáp án : C

Phương pháp giải :

Vận dụng lí thuyết về các đại lượng trong dao động điều hòa và điều kiện cho trước của thời điểm $t=0$.

Lời giải chi tiết :

Ta có:

$\begin{gathered}A = 5cm \hfill \\T = 2{\text{s}} \to \omega  = \frac{{2\pi }}{T} = \pi ra{\text{d}}/s \hfill \\\end{gathered} $

Tại t=0 $\left\{ \begin{gathered}x = 0 \hfill \\ v > 0 \hfill \\\end{gathered}  \right. \leftrightarrow \left\{ \begin{gathered}{\text{cos}}\varphi  = 0 \hfill \\\sin \varphi  < 0 \hfill \\\end{gathered}  \right. \to \varphi  =  - \frac{\pi }{2}$

$ \to x = Ac{\text{os(}}\omega {\text{t + }}\varphi {\text{) = 5cos(}}\pi {\text{t - }}\frac{\pi }{2})cm$

Câu 2 :

Một chất điểm chuyển động tròn đều trong mặt phẳng thẳng đứng, có bán kính quỹ đạo là $8cm$, bắt đầu từ vị trí thấp nhất của đường tròn theo chiều ngược chiều kim đồng hồ với tốc độ không đổi là $16π cm/s$. Hình chiếu của chất điểm lên trục Ox nằm ngang, đi qua tâm O của đường tròn, nằm trong mặt phẳng quỹ đạo có chiều từ trái qua phải là

  • A

    ${\text{x}} = 16c{\text{os}}\left( {2\pi t - \frac{\pi }{2}} \right)(cm)$

  • B

    ${\text{x}} = 16c{\text{os}}\left( {2\pi t + \frac{\pi }{2}} \right)(cm)$

  • C

    ${\text{x}} = 8c{\text{os}}\left( {2\pi t + \frac{\pi }{2}} \right)(cm)$

  • D

    ${\text{x}} = 8c{\text{os}}\left( {2\pi t - \frac{\pi }{2}} \right)(cm)$

Đáp án : D

Phương pháp giải :

Vận dụng lí thuyết về các đại lượng trong dao động điều hòa trong chuyển động tròn đều và điều kiện cho trước của thời điểm $t=0$.

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}A = 8cm\\v = \omega R = \omega A = 16\pi  \to \omega  = \dfrac{{16\pi }}{8} = 2\pi \end{array}\)

Mặt khác, tại thời điểm ban đầu, chất điểm đi qua tâm \(O{\rm{ }} =  > {\rm{ }}x = 0\), nằm trong mặt phẳng có quỹ đạo có chiều từ trái qua phải $=> v > 0$

\(\begin{array}{l} \to \varphi  =  - \dfrac{\pi }{2}\\ \to x = 8c{\rm{os(2}}\pi {\rm{t - }}\dfrac{\pi }{2})cm\end{array}\)

Câu 3 :

Một chất điểm dao động điều hoà với phương trình dạng \(x = cos\left( {2\pi t + \frac{\pi }{6}} \right)\left( {cm,{\text{ }}s} \right)\). Lấy ${\pi ^2} = 10$, biểu thức gia tốc tức thời của chất điểm là:

  • A

    \(a = - 2\pi cos\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • B

    \(a = 40sin\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • C

    \(a = - 40cos\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

  • D

    \(a = 2\pi sin\left( {2\pi t + \dfrac{\pi }{6}} \right){\text{ }}cm/{s^2}\)

Đáp án : C

Phương pháp giải :

Sử dụng lí thuyết về phương trình gia tốc trong dao động điều hòa:

 

$a =  - {\omega ^2}Acos(\omega t + \varphi ) = {\omega ^2}Acos(\omega t + \varphi  + \pi )$

Lời giải chi tiết :

Ta có: $a =  - {\omega ^2}Acos(\omega t + \varphi ) = {\omega ^2}Acos(\omega t + \varphi  + \pi )$

x = cos(2πt + π/6) (cm, s) $ \to a =  - {(2\pi )^2}.1cos(2\pi t + \frac{\pi }{6}) =  - 40cos(2\pi t + \frac{\pi }{6})$

Câu 4 :

Phương trình dao động điều hòa có dạng \(x = Acos\omega t\). Gốc thời gian  được chọn là:

  • A

    Lúc vật có li độ $x = +A$

  • B

    Lúc vật đi qua vị trí cân bằng theo chiều dương.

  • C

    Lúc vật có li độ $x = - A$

  • D

    Lúc vật đi qua vị trí cân bằng theo chiều âm.

Đáp án : A

Phương pháp giải :

Thay $t =0$ vào phương trình dao động của vật

Lời giải chi tiết :

Từ phương trình dao động, ta có:

Gốc thời gian $t = 0$:

$x = Ac{\text{os0   =  A}}$

Câu 5 :

Phương trình dao động của một vật có dạng $x = A\sin (\omega t + \frac{\pi }{4})$.Chọn kết luận đúng?

  • A

    Vật dao động với biên độ $A$

  • B

    Vật dao động với pha ban đầu \(\dfrac{{3\pi }}{4}\)

  • C

    Vật dao động với biên độ $2A$

  • D

    Vật dao động với biên độ $A/2$

Đáp án : A

Phương pháp giải :

- Đồng nhất với phương trình dao động điều hòa .$x = Ac{\text{os}}\left( {\omega t + \varphi } \right)$.

- Sử dụng công thức lượng giác: $\sin \alpha  = c{\text{os}}\left( {\alpha  - \frac{\pi }{2}} \right)$

- Sử dụng lí thuyết về các đại lượng trong phương trình dao động điều hòa.

Lời giải chi tiết :

Ta có: $x = A\sin \left( {\omega t + \dfrac{\pi }{4}} \right) = Ac{\text{os}}\left( {\omega t + \dfrac{\pi }{4} - \dfrac{\pi }{2}} \right) = Ac{\text{os}}\left( {\omega t - \dfrac{\pi }{4}} \right)$

- Biên độ dao động của vật là $A$

- Pha ban đầu: \(\varphi = - \dfrac{\pi }{4}\)

 

Câu 6 :

Một vật nhỏ dao động theo phương trình $x = Acos(ωt + φ) (cm)$. Tại thời điểm ban đầu, vật đi qua vị trí có li độ $x < 0$, hướng ra xa vị trí cân bằng. Giá trị của $φ$ thỏa mãn:

  • A

    \(\frac{\pi }{2} < \varphi  < \pi \)

  • B

    $\frac{\pi }{2} < \varphi  < 0$

  • C

    $ - \pi  < \varphi  <  - \frac{\pi }{2}$ 

  • D

    $0 < \varphi  < \frac{\pi }{2}$

Đáp án : A

Phương pháp giải :

Xét tại t = 0 với các điều kiện của x và v từ đó suy ra pha ban đầu φ           

Lời giải chi tiết :

Tại $t = 0$, ta có $x < 0$ và hướng ra xa vị trí cân bằng $=> v < 0$

$ \leftrightarrow \left\{ \begin{array}{l}
Ac{\rm{os}}\varphi {\rm{ < 0}}\\
v = - A\omega \sin \varphi < 0
\end{array} \right. \to \left\{ \begin{array}{l}
c{\rm{os}}\varphi {\rm{ < 0}}\\
\sin \varphi > 0
\end{array} \right. \to \frac{\pi }{2} < \varphi < \pi $

 

Câu 7 :

Một vật dao động điều hòa với biên độ $A = 8 cm$. Tại thời điểm $t = 0$, vật có li độ $x = -4 cm$ và đang đi theo chiều âm của trục $Ox$. Pha ban đầu của dao động bằng:

  • A

    \( - \dfrac{\pi }{3}\)

  • B

    \( \dfrac{\pi }{3}\)

  • C

    \( - \dfrac{2\pi }{3}\)

  • D

    \( \dfrac{2\pi }{3}\)

Đáp án : D

Phương pháp giải :

Thay $t =0$ vào phương trình dao động của vật $\left\{ \begin{gathered}x = Ac{\text{os}}\varphi  \hfill \\{\text{v =  - A}}\omega {\text{sin}}\varphi  \hfill \\\end{gathered}  \right. \to \left\{ \begin{gathered}{\text{cos}}\varphi {\text{ = }}\frac{{{x_0}}}{A} \hfill \\\sin \varphi  =  - \frac{v}{{A\omega }} \hfill \\\end{gathered}  \right. \to \varphi  = ?$

Lời giải chi tiết :

Ta có: tại t = 0:

\(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi {\rm{ =   -  4}}\\v =  - A\omega \sin \varphi  < 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi  =  - \dfrac{4}{8} =  - \dfrac{1}{2}\\\sin \varphi  > 0\end{array} \right. \to \varphi  = \dfrac{{2\pi }}{3}\)

 

Câu 8 :

Cho một chất điểm dao động điều hòa với tần số $1Hz$, thời điểm đầu vật qua vị trí $x = 5cm$ theo chiều dương với tốc độ \(v = 10\pi cm/s\). Viết phương trình dao động.

  • A

    \(x{\text{ }} = {\text{ }}5\sqrt 2 sin(2\pi t{\text{ }} + \frac{\pi }{4}){\text{ }}cm\)

  • B

    \(x = 5\cos (2\pi t - \frac{\pi }{6})cm\)

  • C

    \(x{\text{ }} = {\text{ }}5sin(2\pi t{\text{ }} + \frac{\pi }{4}){\text{ }}cm\)

  • D

    \(x{\text{ }} = {\text{ }}5\sqrt 2 sin(2\pi t{\text{ }} - \frac{\pi }{6}){\text{ }}cm\)

Đáp án : A

Phương pháp giải :

- Xác định \(\omega  = 2\pi f\)

- Sử dụng hệ thức độc lập xác định biên độ \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\)

- Xác định pha ban đầu: Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v =  - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi  =  - \frac{v}{{A\omega }}\end{array} \right. \to \varphi  = ?\)

- Sử dụng công thức lượng giác: \({\rm{cos}}\alpha {\rm{ = sin}}\left( {\alpha  + \frac{\pi }{2}} \right)\)

 

Lời giải chi tiết :

Ta có:

Tốc độ góc: $\omega  = 2\pi f = 2\pi .1 = 2\pi (ra{\rm{d}}/s)$

Biên độ dao động:

\({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {5^2} + {\left( {\frac{{10\pi }}{{2\pi }}} \right)^2} \to A = 5\sqrt 2 cm\)

Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 5\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{5}{{5\sqrt 2 }}\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \frac{\pi }{4}\)

=> \(x = 5\sqrt 2 {\rm{cos}}\left( {2\pi t - \frac{\pi }{4}} \right)cm = 5\sqrt 2 \sin \left( {2\pi t - \frac{\pi }{4} + \frac{\pi }{2}} \right) = 5\sqrt 2 \sin \left( {2\pi t + \frac{\pi }{4}} \right)cm\)

Câu 9 :

Một vật dao động điều hoà dọc theo trục $Ox$ nằm ngang, gốc $O$ và mốc thế năng ở vị trí cân bằng. Thời gian vật đi từ VTCB đến $A$ hết $0,5s$ và đi hết quãng đường $4cm$ Chọn \(t=0\) lúc vật qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là:

  • A

    \(x = 2c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

  • B

    \(x = 4c{\rm{os}}\left( {2\pi t - \frac{\pi }{2}} \right)cm\)

  • C

    \(x = 2c{\rm{os}}\left( {\pi t + \frac{\pi }{2}} \right)cm\)

  • D

    \(x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

Đáp án : D

Phương pháp giải :

- Xác định \(\omega  = \dfrac{{2\pi }}{T}\)

- Xác định biên độ $A$

- Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v =  - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\dfrac{{{x_0}}}{A}\\\sin \varphi  =  - \dfrac{v}{{A\omega }}\end{array} \right. \to \varphi  = ?\)

Lời giải chi tiết :

Ta có: Thời gian vật đi từ VTCB đến $A$ là :

\(\frac{T}{4} = 0,5 \to T = 2{\rm{s}} \to \omega  = \frac{{2\pi }}{T} = \pi ra{\rm{d}}/s\)

Biên độ A = 4cm

Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 0\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi  = 0\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \frac{\pi }{2}\)

\( \to x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

Câu 10 :

Một vật dao động điều hoà có đồ thị như hình vẽ.

Phương trình dao động của vật là:

  • A

    \(x = 4c{\rm{os}}\left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)cm\)   

  • B

     \(x = 4c{\rm{os}}\left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)cm\)

  • C

    \(x = 4c{\rm{os}}\left( {\pi t - \frac{\pi }{6}} \right)cm\)

  • D

    \(x = 4c{\rm{os}}\left( {\frac{{2\pi }}{3}t - \frac{{5\pi }}{6}} \right)cm\)

Đáp án : A

Phương pháp giải :

 - Sử dụng phương pháp đọc đồ thị li độ theo thời gian của vật

+ Từ đồ thị xác định $A$, chu kì $T$, li độ và vận tốc tại thời điểm $t = 0$

Lời giải chi tiết :

Từ đồ thị, ta có: \(A{\text{ }} = {\text{ }}4cm\)

Thời gian vật đi từ \(t = 0{\text{ }}\left( {x = \frac{A}{2}} \right)\) đến \(t = 2,5s{\text{ }}\left( {x = 0} \right)\) là:

 \(\Delta t = 2,5{\rm{s}} = \frac{T}{6} + \frac{T}{4} = \frac{{5T}}{{12}} \to T = 6{\rm{s}} \to \omega  = \frac{{2\pi }}{T} = \frac{\pi }{3}ra{\rm{d}}/s\)

Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 2\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi  = \frac{2}{4} = \frac{1}{2}\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \frac{\pi }{3}\)

 \( \Rightarrow x = 4c{\rm{os}}\left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)cm\)

Câu 11 :

Vật nặng dao động điều hòa với \(\omega = 10\sqrt 5 rad/s\). Chọn gốc tọa độ trùng với vị trí cân bằng của vật. Biết rằng tại thời điểm ban đầu vật đi qua li độ $x = 2cm$ với vận tốc \(v = 20\sqrt {15} cm/s\). Phương trình dao động của vật là:

  • A

    \(x = 4c{\rm{os}}\left( {10\sqrt 5 t + \frac{\pi }{3}} \right)cm\)

  • B

    \(x = 2\sqrt 2 c{\rm{os}}\left( {10\sqrt 5 t + \frac{\pi }{3}} \right)cm\)

  • C

    \(x = 4c{\rm{os}}\left( {10\sqrt 5 t - \frac{\pi }{3}} \right)cm\) 

  • D

    \(x = 5\sin \left( {10\sqrt 5 t + \frac{\pi }{2}} \right)cm\)

Đáp án : C

Phương pháp giải :

- Sử dụng hệ thức độc lập xác định biên độ \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\)

- Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v =  - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi  =  - \frac{v}{{A\omega }}\end{array} \right. \to \varphi  = ?\)

Lời giải chi tiết :

Ta có: \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {2^2} + \frac{{{{\left( {20\sqrt {15} } \right)}^2}}}{{{{\left( {10\sqrt 5 } \right)}^2}}} = 16 \to A = 4cm\)

Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 2\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{2}{4} = \frac{1}{2}\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \frac{\pi }{3}\)

\( \Rightarrow x = 4c{\rm{os}}\left( {10\sqrt 5 t - \frac{\pi }{3}} \right)cm\)

Câu 12 :

Một vật dao động điều hòa với biên độ $A = 8cm$ và $ω = π rad/s$. Tại thời điểm ban đầu vật qua vị trí có li độ \({x_0} = {\text{ }}4cm\) theo chiều âm. Phương trình dao động của vật là: 

  • A

    \(x = 8cos\left( {\pi t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

  • B

    \(x = 8cos\left( {\pi t - \frac{{2\pi }}{3}} \right)(cm)\)

  • C

    \(x = 8cos\left( {\pi t + \frac{\pi }{3}} \right)\left( {cm} \right)\)

  • D

    \(x = 8cos\left( {\pi t + \frac{{2\pi }}{3}} \right)\left( {cm} \right)\)

Đáp án : C

Phương pháp giải :

Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v =  - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi  =  - \frac{v}{{A\omega }}\end{array} \right. \to \varphi  = ?\)

Lời giải chi tiết :

Ta có A =8cm, ω = π rad/s

Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 4\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  < 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A} = \frac{4}{8} = \frac{1}{2}\\\sin \varphi  > 0\end{array} \right. \to \varphi  = \frac{\pi }{3}\)

=> x =8cos(πt +π/3)(cm)

Câu 13 :

Một vật dao động điều hòa trên quỹ đạo dài $8cm$ với chu kì $T=2s$. Chọn gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là :

  • A

    $x{\rm{ }} = {\rm{ }}8cos\left( {2\pi t - \frac{\pi }{2}} \right)cm$

  • B

    $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t + \frac{\pi }{2}} \right)cm$

  • C

    $x{\rm{ }} = {\rm{ }}8cos\left( {2\pi t + \frac{\pi }{2}} \right)cm$

  • D

    $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t - \frac{\pi }{2}} \right)cm$

Đáp án : D

Phương pháp giải :

- Xác định biên độ $A$, chiều dài quỹ đạo $L = 2A$

- Xác định $\omega  = \frac{{2\pi }}{T}$

- Xác định pha ban đầu: Tại $t=0$: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v =  - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi  =  - \frac{v}{{A\omega }}\end{array} \right. \to \varphi  = ?\)

Lời giải chi tiết :

Ta có: $L=2A = 8cm => A = 4cm$

Tần số góc: $\omega  = \frac{{2\pi }}{T} = \frac{{2\pi }}{2} = \pi ra{\rm{d}}/s$

Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  = 0\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi  = 0\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \frac{\pi }{2}\)

=> $x{\rm{ }} = {\rm{ }}4cos\left( {\pi t - \frac{\pi }{2}} \right)$

Câu 14 :

Một chất điểm dao động điều hòa có đồ thị biểu diễn sự phụ thuộc vào thời gian của li độ như hình vẽ. Phương trình dao động của vật là:

  • A

    \(x = 10cos\left( {\frac{{11\pi }}{6}t + \frac{{2\pi }}{3}} \right)cm\)

  • B

    \(x{\rm{ }} = {\rm{ }}10cos\left( {\frac{{11\pi }}{6}t - \frac{{2\pi }}{3}} \right)cm\)

  • C

    \(x{\rm{ }} = {\rm{ }}10cos\left( {2\pi t + \frac{\pi }{3}} \right)cm\)

  • D

    \(x{\rm{ }} = {\rm{ }}10cos\left( {\frac{{5\pi }}{6}t - \frac{\pi }{3}} \right)cm\)

Đáp án : A

Phương pháp giải :

- Sử dụng phương pháp đọc đồ thị li độ theo thời gian của vật

+ Từ đồ thị xác định A, chu kì T, li độ và vận tốc tại thời điểm t = 0

Lời giải chi tiết :

Từ đồ thị, ta có: A = 10cm

Thời gian vật đi từ t = 0 (x= -A/2) đến t = 1s (x = 0) tương đương các vị trí (-A/2 => -A =>A => 0) là:

\(\Delta t = 1{\rm{s}} = \frac{T}{6} + \frac{{3T}}{4} = \frac{{11T}}{{12}} \to T = \frac{{12}}{{11}}{\rm{s}} \to \omega  = \frac{{2\pi }}{T} = \frac{{11\pi }}{6}ra{\rm{d}}/s\)

Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi  =  - 5\\{\rm{v =  - A}}\omega {\rm{sin}}\varphi  < 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi  = \frac{{ - 2}}{{10}} = \frac{{ - 1}}{2}\\\sin \varphi  > 0\end{array} \right. \to \varphi  =  \frac{{2\pi }}{3}\)

\( \Rightarrow x{\rm{ }} = {\rm{ }}10cos\left( {\frac{{11\pi }}{6}t + \frac{{2\pi }}{3}} \right)cm\)

Câu 15 :

Đồ thị vận tốc của một vật cho ở hình bên, phương trình nào dưới đây là phương trình dao động của vật:

  • A

    \(x = 6c{\rm{os}}\left( {\pi t + \frac{\pi }{2}} \right)cm\)

  • B

    \(x = 6c{\rm{os}}\left( {\pi t} \right)cm\)

  • C

    \(x = 6c{\rm{os}}\left( {\pi t - \frac{\pi }{2}} \right)cm\)

  • D

    \(x = 6\sin \left( {\pi t} \right)cm\)

Đáp án : B

Phương pháp giải :

- Sử dụng phương pháp đọc đồ thị vận tốc theo thời gian của vật

+ Từ đồ thị xác định A, chu kì T, li độ và vận tốc tại thời điểm t = 0

Lời giải chi tiết :

Từ đồ thị, ta có: $T{\rm{ }} = {\rm{ }}2s \to \omega  = \frac{{2\pi }}{T} = \pi ra{\rm{d}}/s$

$A\omega  = 6\pi cm/s \to A = \frac{{6\pi }}{\omega } = \frac{{6\pi }}{\pi } = 6cm$

Tại t = 0: \({\rm{v =  - A}}\omega {\rm{sin}}\varphi  = 0 \to \sin \varphi  = 0 \to \left[ \begin{array}{l}\varphi  = 0\\\varphi  = \pi \end{array} \right.\)

và đang đi theo chiều âm\( \to \varphi  = 0\) 

\( \Rightarrow x = 6c{\rm{os}}\left( {\pi t} \right)cm\)

Câu 16 :

Chọn phương trình biểu thị cho dao động điều hòa:

  • A

    x = A(t)cos(ωt + b) cm

  • B

    x = Acos(ωt + φ(t)) cm

  • C

    x = Acos(ωt + φ) + b (cm)

  • D

    x = Acos(ωt + bt) cm.

Đáp án : C

Phương pháp giải :

Đồng nhất với phương trình dao động điều hòa 

Lời giải chi tiết :

A - loại do biên độ A không phải là hàm theo thời gian

B và D - loại vì pha ban đầu φ không phải là hàm theo thời gian

Câu 17 :

Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa ?

  • A

    x = 2sin(2πt + π/6) (cm)

  • B

    x = 3tcos(100πt + π/6)  (cm)

  • C

    x = - 3cos5πt  (cm)

  • D

    x = 1 + 5cosπt  (cm)

Đáp án : B

Phương pháp giải :

Đồng nhất với phương trình dao động điều hòa: \(x = A\cos \left( {\omega t + \varphi } \right)\)

Lời giải chi tiết :

B- không biểu thị cho dao động điều hòa vì biên độ dao động không phải là hàm của thời gian

Câu 18 :

Trong các phương trình sau phương trình nào không biểu thị cho dao động điều hòa ?

  • A

    x = 5cosπt + 1(cm)

  • B

    x = 3tcos(100πt + π/6)cm

  • C

    x = 2sin2(2πt + π/6)cm

  • D

    x = 3sin5πt + 3cos5πt (cm)

Đáp án : B

Phương pháp giải :

Đồng nhất với phương trình dao động điều hòa : \(x = A\cos \left( {\omega t + \varphi } \right)\)

Lời giải chi tiết :

B- không biểu thị cho dao động điều hòa vì biên độ dao động không phải là hàm của thời gian

close