Trắc nghiệm: Giới thiệu tỉ số Toán 4

Đề bài

Câu 1 :

Tỉ số của \(a\) và \(b\) (\(b\) khác \(0\)) là:

A. \(a + b\)

B. \(a - b\)

C. \(a \times b\)

D. \(a:b\)

Câu 2 :

Tỉ số của \(3\) và \(5\) là:  

A. \(3:5\)        

B. \(\dfrac{3}{5}\)      

C. Cả A và B đều đúng

D. Cả A và B đều sai

Câu 3 :

$Biết\ a=4;\ b=7\ thì\ tỉ\ số\ của\ a\ và\ b\ là\ \frac{?}{?}$
Câu 4 :


Tỉ số của \(10\) và \(21\) là \(\dfrac{{21}}{{10}}\). Đúng hay sai?

Đúng
Sai
Câu 5 :

Điền số thích hợp vào ô trống:

$Biết\ a=11;\ b=15\ thì\ tỉ\ số\ của\ b\ và\ a\ là\ \frac{?}{?}$
Câu 6 :

Điền số thích hợp vào ô trống:

Số thứ nhất là số lớn nhất có hai chữ số khác nhau. Số thứ hai là số lẻ nhỏ nhất có ba chữ số khác nhau. Vậy tỉ số của số thứ nhất và số thứ hai là  \(\dfrac{a}{b}\).


Vậy \(a=\)

   ;  \(b=\)

Câu 7 :

Một hộp đựng \(7\) quả bóng xanh và \(9\) quả bóng đỏ. Tỉ số của số quả bóng đỏ và số quả bóng xanh là:

A. \(\dfrac{7}{{16}}\)

B. \(\dfrac{9}{{16}}\)

C. \(\dfrac{7}{9}\)

D. \(\dfrac{9}{7}\)

Câu 8 :

Lớp 4A có \(15\) học sinh nam và \(18\) học sinh nữ. Viết tỉ số của số học sinh nam và số học sinh cả lớp.

A. \(\dfrac{{15}}{{18}}\)

B. \(\dfrac{{18}}{{15}}\)

C. \(\dfrac{{15}}{{33}}\)

D. \(\dfrac{{18}}{{33}}\)

Câu 9 :

Một trại chăn nuôi có \(156\) con gà và có số ngan bằng \(\dfrac{3}{4}\) số gà. Hỏi trại chăn nuôi đó có bao nhiêu con ngan?

A. \(113\) con

B. \(115\) con

C. \(117\) con

D. \(119\) con

Câu 10 :

Điền số thích hợp vào ô trống:

Một hình chữ nhật có chu vi là $72cm$. Chiều rộng kém chiều dài là $14cm$. Vậy tỉ số của chiều rộng và chiều dài là \(\dfrac{a}{b}\).


Vậy \(a=\)

 ; \(b=\)

Lời giải và đáp án

Câu 1 :

Tỉ số của \(a\) và \(b\) (\(b\) khác \(0\)) là:

A. \(a + b\)

B. \(a - b\)

C. \(a \times b\)

D. \(a:b\)

Đáp án

D. \(a:b\)

Lời giải chi tiết :

Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Vậy đáp án đúng là \(a:b\).

Câu 2 :

Tỉ số của \(3\) và \(5\) là:  

A. \(3:5\)        

B. \(\dfrac{3}{5}\)      

C. Cả A và B đều đúng

D. Cả A và B đều sai

Đáp án

C. Cả A và B đều đúng

Phương pháp giải :

Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Lời giải chi tiết :

 Tỉ số của \(3\) và \(5\) là \(3:5\) hay \(\dfrac{3}{5}\).

Vậy cả đáp án A và B đều đúng.

Câu 3 :

$Biết\ a=4;\ b=7\ thì\ tỉ\ số\ của\ a\ và\ b\ là\ \frac{?}{?}$
Đáp án
$Biết\ a=4;\ b=7\ thì\ tỉ\ số\ của\ a\ và\ b\ là\ \frac{4}{7}$
Phương pháp giải :

Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Lời giải chi tiết :

Với \(a = 4;\,\,b = 7\) thì tỉ số của \(a\) và \(b\) là \(4:7\) hay \(\dfrac{4}{7}\).

Câu 4 :


Tỉ số của \(10\) và \(21\) là \(\dfrac{{21}}{{10}}\). Đúng hay sai?

Đúng
Sai
Đáp án
Đúng
Sai
Phương pháp giải :

Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Lời giải chi tiết :

Tỉ số của \(10\) và \(21\) là \(10:21\) hay \(\dfrac{{10}}{{21}}\).

Vậy khẳng định tỉ số của \(10\) và \(21\) là \(\dfrac{{21}}{{10}}\) là sai.

Câu 5 :

Điền số thích hợp vào ô trống:

$Biết\ a=11;\ b=15\ thì\ tỉ\ số\ của\ b\ và\ a\ là\ \frac{?}{?}$
Đáp án
$Biết\ a=11;\ b=15\ thì\ tỉ\ số\ của\ b\ và\ a\ là\ \frac{15}{11}$
Phương pháp giải :

Từ định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)),  ta suy ra tỉ số của \(b\) và \(a\)  là \(b:a\) hay \(\dfrac{b}{a}\).

Lời giải chi tiết :

Với \(a = 11\,;\,\,b = 15\) thì tỉ số của \(b\) và \(a\) là \(15:11\) hay \(\dfrac{{15}}{{11}}\).

Câu 6 :

Điền số thích hợp vào ô trống:

Số thứ nhất là số lớn nhất có hai chữ số khác nhau. Số thứ hai là số lẻ nhỏ nhất có ba chữ số khác nhau. Vậy tỉ số của số thứ nhất và số thứ hai là  \(\dfrac{a}{b}\).


Vậy \(a=\)

   ;  \(b=\)

Đáp án

Số thứ nhất là số lớn nhất có hai chữ số khác nhau. Số thứ hai là số lẻ nhỏ nhất có ba chữ số khác nhau. Vậy tỉ số của số thứ nhất và số thứ hai là  \(\dfrac{a}{b}\).


Vậy \(a=\)

   ;  \(b=\)

Phương pháp giải :

- Tìm hai số đó.

- Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Lời giải chi tiết :

Số lớn nhất có hai chữ số khác nhau là \(98\). Vậy số thứ nhất là \(98\).

Số lẻ nhỏ nhất có ba chữ số khác nhau là \(103\). Vậy số thứ hai là \(103\).

Tỉ số của số thứ nhất và số thứ hai là \(\dfrac{{98}}{{103}}\).

Vậy đáp án đúng điền vào ô trống lần lượt từ trái sang phải là \(98\,\,;\,\,\,103\).

Câu 7 :

Một hộp đựng \(7\) quả bóng xanh và \(9\) quả bóng đỏ. Tỉ số của số quả bóng đỏ và số quả bóng xanh là:

A. \(\dfrac{7}{{16}}\)

B. \(\dfrac{9}{{16}}\)

C. \(\dfrac{7}{9}\)

D. \(\dfrac{9}{7}\)

Đáp án

D. \(\dfrac{9}{7}\)

Phương pháp giải :

Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)).

Lời giải chi tiết :

Có \(7\) quả bóng xanh và \(9\) quả bóng đỏ nên tỉ số của số quả bóng đỏ và số quả bóng xanh là \(\dfrac{9}{7}\).

Câu 8 :

Lớp 4A có \(15\) học sinh nam và \(18\) học sinh nữ. Viết tỉ số của số học sinh nam và số học sinh cả lớp.

A. \(\dfrac{{15}}{{18}}\)

B. \(\dfrac{{18}}{{15}}\)

C. \(\dfrac{{15}}{{33}}\)

D. \(\dfrac{{18}}{{33}}\)

Đáp án

C. \(\dfrac{{15}}{{33}}\)

Phương pháp giải :

- Tính số học sinh cả lớp.

Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)) để viết tỉ số của số học sinh nam và số học sinh cả lớp.

Lời giải chi tiết :

Lớp 4A có tất cả số học sinh là:

            \(15 + 18 = 33\) (học sinh)

Lớp 4A có tất cả \(33\) học sinh, trong đó có \(15\) học sinh nam , do đó tỉ số của số học sinh nam và số học sinh cả lớp là \(\dfrac{{15}}{{33}}\).

Câu 9 :

Một trại chăn nuôi có \(156\) con gà và có số ngan bằng \(\dfrac{3}{4}\) số gà. Hỏi trại chăn nuôi đó có bao nhiêu con ngan?

A. \(113\) con

B. \(115\) con

C. \(117\) con

D. \(119\) con

Đáp án

C. \(117\) con

Phương pháp giải :

Số ngan bằng \(\dfrac{3}{4}\) số gà, hay số con ngan bằng \(\dfrac{3}{4}\) của \(156\) con. Để tìm số con ngan ta lấy \(156\) nhân với \(\dfrac{3}{4}\).

Lời giải chi tiết :

Trại chăn nuôi đó có số con ngan là:

            \(156 \times \dfrac{3}{4} = 117\) (con)

                                               Đáp số: \(117\) con.

Câu 10 :

Điền số thích hợp vào ô trống:

Một hình chữ nhật có chu vi là $72cm$. Chiều rộng kém chiều dài là $14cm$. Vậy tỉ số của chiều rộng và chiều dài là \(\dfrac{a}{b}\).


Vậy \(a=\)

 ; \(b=\)

Đáp án

Một hình chữ nhật có chu vi là $72cm$. Chiều rộng kém chiều dài là $14cm$. Vậy tỉ số của chiều rộng và chiều dài là \(\dfrac{a}{b}\).


Vậy \(a=\)

 ; \(b=\)

Phương pháp giải :

- Tính nửa chu vi :

            Nửa chu vi = chu vi \(:\,2\) = chiều dài + chiều rộng.

- Tìm chiều dài và chiều rộng dựa vào công thức tìm hai số khi biết tổng và hiệu của hai số :

            Số bé = (tổng – hiệu) : $2$  ;   Số lớn = (tổng + hiệu) : $2$ 

- Áp dụng định nghĩa : Tỉ số của \(a\) và \(b\) là \(a:b\) hay \(\dfrac{a}{b}\) (\(b\) khác \(0\)) để viết tỉ số của chiều rộng và chiều dài.

Lời giải chi tiết :

Nửa chu vi hình chữ nhật là:

            $72:2 = 36\,\,(cm)$

Chiều rộng của hình chữ nhật đó là:

            \((36 - 14):2 = 11\,\,(cm)\)

Chiều dài của hình chữ nhật đó là:

            \(11 + 14 = 25\,\,(cm)\)

Hình chữ nhật có chiều rộng \(11cm\) và chiều dài \(25cm\). Vậy tỉ số của chiều rộng và chiều dài là \(\dfrac{{11}}{{25}}\).

Vậy đáp án đúng điền vào ô trống từ trái sang phải lần lượt là \(11\,\,;\,\,\,25\).

close