Giải bài 4 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo

Phát biểu lại định lí này sử dụng thuật ngữ “điều kiện cần và đủ”.

Quảng cáo

Đề bài

Cho định lí: “\(\forall x \in \mathbb{R},x \in \mathbb{Z}\) nếu và chỉ nếu \(x + 1 \in \mathbb{Z}\)”.

Phát biểu lại định lí này sử dụng thuật ngữ “điều kiện cần và đủ”.

Phương pháp giải - Xem chi tiết

Mệnh đề trên có dạng “P nếu và chỉ nếu Q”, là một mệnh đề tương đương.

Có thể phát biểu là: “P là điều kiện cần và đủ để có Q” (hoặc “Q là điều kiện cần và đủ để có P”)

Lời giải chi tiết

Mệnh đề trên có dạng “P nếu và chỉ nếu Q”, là một mệnh đề tương đương với P: “\(x \in \mathbb{Z}\)” và Q: “\(x + 1 \in \mathbb{Z}\)” (\(x \in \mathbb{R}\))

Phát biểu:

 “\(\forall x \in \mathbb{R},x \in \mathbb{Z}\) là điều kiện cần và đủ để có \(x + 1 \in \mathbb{Z}\)”

Hoặc “\(\forall x \in \mathbb{R},x + 1 \in \mathbb{Z}\) là điều kiện cần và đủ để có \(x \in \mathbb{Z}\)”

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close