Giải bài 6 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạoCho tam giác ABC có AB = 6,AC = 8 và A =60 a) Tính diện tích tam giác ABC. b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC. Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Cho tam giác ABC có \(AB = 6,AC = 8\) và \(\widehat A = {60^o}.\) a) Tính diện tích tam giác ABC. b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC. Phương pháp giải - Xem chi tiết a) Tính diện tích bằng công thức: \(S = \frac{1}{2}bc\sin A\) b) Tìm a, từ đó suy ra R bằng định lí sin => Tính diện tích tam giác IBC Lời giải chi tiết Đặt \(a = BC,b = AC,c = AB.\) a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \) b) Áp dụng định lí cosin cho tam giác ABC ta được: \(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\) Xét tam giác IBC ta có: Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung) \(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\) \( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)
Quảng cáo
|