Giải bài 3 trang 118 SGK Toán 10 tập 1 – Chân trời sáng tạoAn lấy ra ngẫu nhiên 3 quả bóng từ một hộp có chứa nhiều bóng xanh và bóng đỏ. An đếm xem có bao nhiêu bóng đỏ trong 3 bóng lấy ra rồi trả bóng lại hộp. An lặp lại phép thử trên 100 lần và ghi lại kết quả ở bảng sau: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài An lấy ra ngẫu nhiên 3 quả bóng từ một hộp có chứa nhiều bóng xanh và bóng đỏ. An đếm xem có bao nhiêu bóng đỏ trong 3 bóng lấy ra rồi trả bóng lại hộp. An lặp lại phép thử trên 100 lần và ghi lại kết quả ở bảng sau:
Hãy tìm số trung bình, tứ phân vị và mốt của bảng kết quả trên. Phương pháp giải - Xem chi tiết Cho bảng số liệu:
+) Số trung bình: \(\overline x = \frac{{{x_1}.{f_1} + {x_2}.{f_2} + ... + {x_m}.{f_m}}}{{{f_1} + {f_2} + ... + {f_m}}}\) +) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(n = {f_1} + {f_2} + ... + {f_m}\) Bước 2: \({Q_2}\) là trung vị của mẫu số liệu trên. \({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ) \({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ) +) Mốt \({M_o}\) là giá trị có tần số lớn nhất. (Một mẫu có thể có nhiều mốt) Lời giải chi tiết +) Số trung bình: \(\overline x = \frac{{0.10 + 1.30 + 2.40 + 3.20}}{{100}} = 1,7\) +) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm, \(\underbrace {0,...,0}_{10},\underbrace {1,...,1}_{30},\underbrace {2,...,2}_{40},\underbrace {3,...,3}_{20}.\) Bước 2: Vì \(n = 100\), là số chẵn nên \({Q_2} = \frac{1}{2}(2 + 2) = 2\) \({Q_1}\) là trung vị của nửa số liệu: \(\underbrace {0,...,0}_{10},\underbrace {1,...,1}_{30},\underbrace {2,...,2}_{10}.\) Do đó \({Q_1} = \frac{1}{2}(1 + 1) = 1\) \({Q_3}\) là trung vị của nửa số liệu \(\underbrace {2,...,2}_{30},\underbrace {3,...,3}_{20}.\) Do đó \({Q_3} = \frac{1}{2}(2 + 2) = 2\) +) Mốt \({M_o} = 2\)
Quảng cáo
|