Giải mục 3 trang 29, 30, 31 SGK Toán 10 tập 2 - Chân trời sáng tạo

Lan vừa mua 4 cuốn sách kí hiệu là A, B, C và D. Bạn ấy dự định chọn ra 3 cuốn để đưa về quê đọc trong dịp nghỉ hè Nội dung thi đấu đôi nam nữ của giải bóng bàn cấp trường có 7 đội tham gia. Các đội thi đấu vòng tròn một lượt Cho 6 điểm cùng nằm trên một đường tròn như hình 8

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ Khám phá 3

 Lan vừa mua 4 cuốn sách kí hiệu là A, B, C và D. Bạn ấy dự định chọn ra 3 cuốn để đưa về quê đọc trong dịp nghỉ hè

a) Hãy liệt kê tất cả các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách. Có tất cả bao nhiêu cách?

b) Lan dự định đọc lần lượt từng cuốn. Lan có bao nhiêu cách sắp xếp thứ tự 3 cuốn đã chọn?

c) Lan có bao nhiêu cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một?

Lời giải chi tiết:

a) Các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách Lan có là:

ABC, ABD, ACD, BCD

Có tất cả 4 cách chọn 3 cuốn sách trong số 4 cuốn sách Lan có để mang về quê

b) Mỗi cách sắp xếp thứ tự 3 cuốn sách đã chọn là một hoán vị của 3 cuốn sách, từ đó số cách sắp xếp 3 cuốn sách là số hoán vị của 3 cuốn sách:

          \(3! = 3.2.1 = 6\) (cách)

c) Mỗi cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một là một chỉnh hợp chập 3 của 4 phần tử, từ đó số cách chọn và sắp xếp 3 cuốn sách và sắp xếp chúng là:         \(A_4^3 = 4.3.2 = 24\) (cách)

Thực hành 3

Tính:

a) \(C_7^2\)

b)  \(C_9^0 + C_9^9\)

c) \(C_{15}^3 - C_{14}^3\)

Phương pháp giải:

Sử dụng công thức  \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\)

Lời giải chi tiết:

a) \(C_7^2 = \frac{{7!}}{{2!.5!}} = \frac{{7.6}}{2} = 21\)

b) \(C_9^0 + C_9^9 = \frac{{9!}}{{0!.9!}} + \frac{{9!}}{{9!.0!}} = 2\)

c) \(C_{15}^3 - C_{14}^3 = \frac{{15!}}{{3!.12!}} - \frac{{14!}}{{3!.11!}} = \frac{{15.14.13}}{{3.2.1}} - \frac{{14.13.12}}{{3.2.1}} = 91\)

Thực hành 4

Nội dung thi đấu đôi nam nữ của giải bóng bàn cấp trường có 7 đội tham gia. Các đội thi đấu vòng tròn một lượt

a) Nội dung này có tất cả bao nhiêu trận đấu?

b) Sau giải đấu, ba đội có thành tích tốt nhất sẽ được chọn đi thi đấu cấp lên trường. Có bao nhiêu khả năng có thể xảy ra về ba đội được chọn đi thi đấu cấp lên trường?

Phương pháp giải:

a) Số trận đấu là tổ hợp chập 2 của 7

b) Số khả năng là tổ hợp chập 3 của 7

Lời giải chi tiết:

a) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:

\(C_7^2 = \frac{{7!}}{{2!.5!}} = 21\) (trận)

b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là

                   \(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\)

Vận dụng 2

Cho 6 điểm cùng nằm trên một đường tròn như hình 8

a) Có bao nhiêu đoạn thẳng có điểm đầu mút thuộc các điểm đã cho?

b) Có bao nhiêu tam giác có đỉnh thuộc các điểm đã cho?

Phương pháp giải:

a) Tính tổ hợp chập 2 của 6

b) Tính tổ hợp chập 3 của 6

Lời giải chi tiết:

a) Một đoạn thẳng được tạo bởi 2 điểm bất kì

Nên để có một đoạn thẳng có điểm mút thuộc các điểm đã cho thì ta chọn 2 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 2 điểm từ 6 điểm đã cho là một tổ hợp chập 2 của 6, từ đó số đoạn thẳng có điểm đầu mút thuộc các điểm đã cho được tạo ra là:

                   \(C_6^2 = \frac{{6!}}{{2!.4!}} = 15\) (đoạn thẳng)

b) Mỗi tam giác được tạo bởi 3 điểm không thẳng hàng, nên để có một tam giác mà các đỉnh của nó là các điểm đã cho thì ta chọn 3 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 3 điểm từ 6 điểm là một tổ hợp chập 3 của 6, từ đó số tam giác có đỉnh thuộc các điểm đã cho là:

                             \(C_6^3 = \frac{{6!}}{{3!.3!}} = 20\) (tam giác)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close