Giải bài 8 trang 45 SGK Toán 10 tập 2 – Chân trời sáng tạo

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB b) Tính chu vi tam giác OAB c) Chứng minh rằng OA vuông góc AB và từ đó tính diện tích tam giác OAB

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Cho hai điểm \(A\left( {1;3} \right),B\left( {4;2} \right)\)

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA=DB

b) Tính chu vi tam giác OAB

c) Chứng minh rằng OA vuông góc  AB và từ đó tính diện tích tam giác OAB

Lời giải chi tiết

a) Gọi tọa độ điểm D là \((x;0)\)

Ta có: \(\overrightarrow {DB}  = \left( {4 - x;2} \right) \Rightarrow DB = \left| {\overrightarrow {DB} } \right| = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \)

\(\begin{array}{l}DA = DB \Leftrightarrow \sqrt {{{\left( {1 - x} \right)}^2} + {3^2}}  = \sqrt {{{\left( {4 - x} \right)}^2} + {2^2}} \\ \Rightarrow {\left( {1 - x} \right)^2} + {3^2} = {\left( {4 - x} \right)^2} + {2^2}\\ \Rightarrow x^2 -2x+10 = x^2 -8x+ 20\\ \Rightarrow 6x = 10\\ \Rightarrow x = \frac{5}{3}\end{array}\)

Thay \(x = \frac{5}{3}\) ta thấy thảo mãn phương trình

Vậy khi \(D\left( {\frac{5}{3};0} \right)\) thì  DA=DB

b) Ta có: \(\overrightarrow {OA}  = \left( {1;3} \right) \Rightarrow OA = \left| {\overrightarrow {OA} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} \)

          \(\overrightarrow {OB}  = \left( {4;2} \right) \Rightarrow OB = \left| {\overrightarrow {OB} } \right| = \sqrt {{4^2} + {2^2}}  = 2\sqrt 5 \)

          \(\overrightarrow {AB}  = \left( {3; - 1} \right) \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {10} \)

Chu vi tam giác OAB

\({C_{OAB}} = OA + OB + AB = \sqrt {10}  + 2\sqrt 5  + \sqrt {10}  = 2\sqrt {10}  + 2\sqrt 5 \)

c) \(\overrightarrow {OA} .\overrightarrow {AB}  = 1.3 + 3.( - 1) = 0 \Rightarrow OA \bot AB\)

Tam giác OAB vuông tại A nên diện tích của tam giác là

\({S_{OAB}} = \frac{1}{2}OA.AB = \frac{1}{2}\sqrt {10} .\sqrt {10}  = 5\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close