Giải bài 7 trang 36 SGK Toán 10 tập 2 – Chân trời sáng tạoHãy khai triển và rút gọn biểu thức Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Quảng cáo
Đề bài Hãy khai triển và rút gọn biểu thức \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4}\) Sử dụng kết quả đó để tính gần đúng biểu thức \(1,{05^4} + 0,{95^4}\) Phương pháp giải - Xem chi tiết Áp dụng công thức nhị thức Newton \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \) Lời giải chi tiết a) Áp dụng công thức nhị thức Newton, ta có: \(\begin{array}{l}{\left( {1 + x} \right)^4} = {1^4} + C_4^1{.1^3}x + C_4^2{.1^2}{x^2} + C_4^3.1{x^3} + C_4^4{x^4}\\ = 1 + 4x + 6{x^2} + 4{x^3} + {x^4}\end{array}\) \(\begin{array}{l}{\left( {1 - x} \right)^4} = {1^4} + C_4^1{.1^3}\left( { - x} \right) + C_4^2{.1^2}{\left( { - x} \right)^2} + C_4^3.1{\left( { - x} \right)^3} + C_4^4{\left( { - x} \right)^4}\\ = 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\end{array}\) Suy ra \(\begin{array}{l}{\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 1 + 4x + 6{x^2} + 4{x^3} + {x^4} + 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\\ = 2 + 12{x^2} + 2{x^4}\end{array}\) Vậy \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\) Ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4}\) Áp dụng biểu thức vừa chứng minh \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\) ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4} = 2 + 12.0,0{5^2} + 2.0,0{5^4}\\ = 2,0300125\)
Quảng cáo
|