Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo

A. Lý thuyết 1. Phương trình đường tròn Trong mặt phẳng Oxy, cho đường tròn (C) tâm I(a;b), bán kính R. Ta có M(x;y) nằm trên đường tròn (C) khi và chỉ khi

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

A. Lý thuyết

1. Phương trình đường tròn

Trong mặt phẳng Oxy, cho đường tròn (C) tâm I(a;b), bán kính R. Ta có M(x;y) nằm trên đường tròn (C) khi và chỉ khi

\(IM = R \Leftrightarrow \sqrt {{{(x - a)}^2} + {{(y - b)}^2}}  = R \Leftrightarrow {(x - a)^2} + {(y - b)^2} = {R^2}\).

Phương trình đường tròn tâm I(a;b) bán kính R là

\({(x - a)^2} + {(y - b)^2} = {R^2}\).

Nhận xét: Phương trình đường tròn \({(x - a)^2} + {(y - b)^2} = {R^2}\) có thể được viết dưới dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\).

Phương trình \({x^2} + {y^2} - 2ax - 2by + c = 0\) là phương trình của một đường tròn (C) khi và chỉ khi \({a^2} + {b^2} > c\). Khi đó, (C) có tâm I(a;b) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).

2. Phương trình tiếp tuyến của đường tròn

Phương trình tiếp tuyến của đường tròn tâm I(a;b) tại điểm \({M_0}({x_0};{y_0})\) nằm trên đường tròn là:

\(({x_0} - a)(x - {x_0}) + ({y_0} - b)(y - {y_0}) = 0\).

 

B. Bài tập

Bài 1:

a) Tìm tâm và bán kính đường tròn (C) có phương trình: \({(x - 2)^2} + {(y + 3)^2} = 16\).

b) Viết phương trình đường tròn (C’) tâm J(2;-1) và có bán kính gấp đôi bán kính đường tròn (C).

Giải:

a) Ta viết phương trình của (C) ở dạng \({(x - 2)^2} + {(y - ( - 3))^2} = {4^2}\).

Vậy (C) có tâm I(2;-3) và bán kính R = 4.

b) Đường tròn (C’) có tâm J(2;-1) và bán kính R’ = 2R = 8 nên có phương trình:

\({(x - 2)^2} + {(y + 1)^2} = 64\).

Bài 2: Phương trình \({x^2} + {y^2} - 4x + 2y - 4 = 0\) có phải là phương trình đường tròn không? Nếu có, xác định tọa độ tâm và bán kính của đường tròn đó.

Giải:

Từ phương trình, ta có \(a = \frac{{ - 4}}{{ - 2}} = 2\); \(b = \frac{2}{{ - 2}} =  - 1\); c = -4.

Suy ra \({a^2} + {b^2} - c = {2^2} + {( - 1)^2} - ( - 4) = 9 > 0\).

Vậy phương trình \({x^2} + {y^2} - 4x + 2y - 4 = 0\) là phương trình đường tròn tâm I(2;-1) và bán kính \(R = \sqrt 9  = 3\).

Bài 3: Lập phương trình đường tròn đi qua ba điểm A(-1;1), B(0;-2), C(0;2).

Giải:

Giả sử tâm của đường tròn là điểm I(a;b). Ta có \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\).

Khi đó:

\(\left\{ \begin{array}{l}{( - 1 - a)^2} + {(1 - b)^2} = {(0 - a)^2} + {( - 2 - b)^2}\\{(0 - a)^2} + {( - 2 - b)^2} = {(0 - a)^2} + {(2 - b)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} + 2a - 2b + 2 = {a^2} + {b^2} + 4b + 4\\{a^2} + {b^2} + 4b + 4 = {a^2} + {b^2} - 4b + 4\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2a - 2b = 4b + 2\\b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\).

Đường tròn tâm I(1;0) bán kính \(R = IC = \sqrt {{a^2} + {b^2} - 4b + 4}  = \sqrt 5 \).

Phương trình đường tròn là \({(x - 1)^2} + {(y - 0)^2} = {(\sqrt 5 )^2}\).

Vậy phương trình đường tròn là \({(x - 1)^2} + {y^2} = 5\).

Bài 4: Cho đường tròn (C) có phương trình \({(x + 1)^2} + {(y - 3)^2} = 5\). Điểm M(0;1) có thuộc đường tròn (C) hay không? Nếu có, hãy viết phương trình tiếp tuyến tại M của (C).

Giải:

Do \({(0 + 1)^2} + {(1 - 3)^2} = 5\), nên điểm M thuộc (C).

Đường tròn (C) có tâm là I(-1;3). Tiếp tuyến của (C) tại M(0;1) có vecto pháp tuyến \( - 1(x - 0) + 2(y - 1) = 0 \Leftrightarrow x - 2y + 2 = 0\).

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close