Giải bài 8 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo

Tính khoảng cách giữa hai đường thẳng

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Tính khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\)

Phương pháp giải - Xem chi tiết

 +) Khoảng cách giữa hai đường thẳng song song là khoảng cách một điểm bất kì từ đường thẳng này tới đường thẳng còn lại

+) khoảng cách từ \(A(x_0;y_0)\) đến d là: \(d\left( {A,\Delta } \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Lời giải chi tiết

Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}}  = \left( {3;4} \right),\overrightarrow {{n_2}}  = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close