Giải bài 3 trang 86 SGK Toán 10 tập 2 – Chân trời sáng tạoGieo ba con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau: a) “Tổng số chấm xuất hiện nhỏ hơn 5” b) “Tích số chấm xuất hiện chia hết cho 5” Quảng cáo
Đề bài Gieo ba con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau: a) “Tổng số chấm xuất hiện nhỏ hơn 5” b) “Tích số chấm xuất hiện chia hết cho 5” Phương pháp giải - Xem chi tiết Bước 1: Xác định không gian mẫu Bước 2: Xác định biến cố đối \(\overline A \) Bước 3: Tính xác suất bằng công thức \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} \Rightarrow P\left( A \right) = 1 - P\left( {\overline A } \right)\) Lời giải chi tiết Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = {6^3}\) a) Gọi A là biến cố “Tổng số chấm xuất hiện nhỏ hơn 5”, ta có biến cố đối của A là \(\overline A \): “Tổng số chấm xuất hiện lớn hơn hoặc bằng 5” Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = 1 + C_3^1 = 4\) Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{4}{{{6^3}}} = \frac{1}{{54}}\) Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{54}} = \frac{{53}}{{54}}\) b) Gọi A là biến cố “Tích số chấm xuất hiện chia hết cho 5”, ta có biến cố đối của A là \(\overline A \): “Tích số chấm xuất hiện không chia hết cho 5” \(\overline A \) xảy ra khi không có mặt của xúc xắc nào xuất hiện 5 chấm Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = {5^3}\) Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{{5^3}}}{{{6^3}}} = \frac{{125}}{{216}}\) Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\)
Quảng cáo
|