Giải bài 2 trang 101 SGK Toán 10 tập 1 – Chân trời sáng tạoCho hình chữ nhật ABCD có tâm O và cho AD = a, AB = 2a. Tính: Quảng cáo
Đề bài Cho hình chữ nhật ABCD có tâm O và cho AD = a, AB = 2a. Tính: a) \(\overrightarrow {AB} .\overrightarrow {AO} \); b) \(\overrightarrow {AB} .\overrightarrow {AD} \). Phương pháp giải - Xem chi tiết a) Bước 1: Tính đường chéo AC, BD Bước 2: Xác định số đo góc \(\widehat {OAB}\) Bước 3: Sử dụng công thức \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) b) Sử dụng công thức \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) Lời giải chi tiết a) \(AC = BD = \sqrt {A{B^2} + A{D^2}} \\= \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \) \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {AO} } \right) = \cos \widehat {OAB} =\\ \cos \widehat {CAB} = \frac{{AB}}{{AC}} = \frac{{2a}}{{a\sqrt 5 }} = \frac{{2\sqrt 5 }}{5}\) \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AO} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AO} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AO} } \right) \\= AB.\frac{1}{2}AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AO} } \right)\\ = 2a.\frac{1}{2}.a\sqrt 5 .\frac{{2\sqrt 5 }}{5} = 2{a^2}\end{array}\) b) \(AB \bot AD \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = 90^o \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) =0 \Rightarrow \overrightarrow {AB} .\overrightarrow {AD} = 0\)
Quảng cáo
|