Trắc nghiệm Bài 4: Trường hợp bằng nhau thứ nhất của tam giác cạnh - cạnh - cạnh Toán 7 Cánh diềuĐề bài Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\) Câu 1
Chọn câu đúng.
Câu 2
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
Câu 3 :
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm $O$ bán kính bằng $2cm,$ cung tròn này cắt $Ox, Oy$ lần lượt ở $A$ và $B.$ Vẽ các cung tròn tâm $A$ và tâm $B$ có bán kính $3cm,$ chúng cắt nhau tại điểm $C$ nằm trong góc $xOy.$ Tính \(\widehat {xOC}\) .
Câu 4 :
Cho tam giác $ABC$ có $AB < AC$ . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi $O$ là một điểm nằm ở trong tam giác sao cho $OA = OC,OB = OE.$ Khi đó:
Câu 5 :
Cho tam giác $MNP$ có $MN = MP.$ Gọi $A$ là trung điểm của $NP.$ Biết \(\widehat {NMP} = {40^0}\) thì số đo góc $MPN$ là:
Câu 6 :
Cho tam giác $ABC$ có $AB = AC$ và $MB = MC$ (\(M \in BC\)). Chọn câu sai.
Câu 7 :
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$ Câu 8
Phát biểu nào trong các phát biểu sau đây là đúng:
Câu 9
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
Câu 10 :
Cho hình dưới đây. Chọn câu sai.
Câu 11 :
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
Câu 12 :
Cho hình vẽ sau. Tam giác nào bằng với tam giác \(ABC?\)
Lời giải và đáp án Trên đường thẳng \(xy\) lấy hai điểm \(A,B\). Trên cùng nửa mặt phẳng bờ \(xy\) lấy hai điểm \(C\) và \(C'\) sao cho \(AC = BC';BC = AC'.\) Câu 1
Chọn câu đúng.
Đáp án : D Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau theo trường hợp cạnh-cạnh-cạnh, sau đó suy ra hai góc tương ứng bằng nhau. Lời giải chi tiết :
Hai tam giác \(ACB\) và \(BC'A\) có $AC = BC'$ (gt) \(BC = AC'\) (gt) \(AB\) là cạnh chung Nên \(\Delta ACB = \Delta BC'A\,\left( {c - c - c} \right).\) Suy ra \(\widehat {BCA} = \widehat {BC'A}\) (hai góc tương ứng bằng nhau). Nên A, B, C sai, D đúng. Câu 2
So sánh hai góc \(\widehat {CAC'};\,\widehat {CBC'}\)?
Đáp án : C Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau. Từ đó suy ra được điều phải chứng minh. Lời giải chi tiết :
Vì \(\Delta ACB = \Delta BC'A\,\)(ý trước) ta suy ra \(\widehat {CAB} = \widehat {C'BA}\) và \(\widehat {C'AB} = \widehat {CBA}\) (1) (hai góc tương ứng bằng nhau) Lại có \(\widehat {CAB} = \widehat {CAC'} + \widehat {C'AB}\) và \(\widehat {C'AB} = \widehat {CBC'} + \widehat {CBA}\) (tia làm giữa hai tia) Suy ra $\widehat {CAC'} = \widehat {CAB} - \widehat {C'AB}$ và \(\widehat {CBC'} = \widehat {C'BA} - \widehat {CBA}\) (2) Từ \(\left( 1 \right);\left( 2 \right)\) suy ra \(\widehat {CAC'} = \widehat {CBC'}\).
Câu 3 :
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm $O$ bán kính bằng $2cm,$ cung tròn này cắt $Ox, Oy$ lần lượt ở $A$ và $B.$ Vẽ các cung tròn tâm $A$ và tâm $B$ có bán kính $3cm,$ chúng cắt nhau tại điểm $C$ nằm trong góc $xOy.$ Tính \(\widehat {xOC}\) .
Đáp án : A Phương pháp giải :
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau. Từ đó suy ra được điều phải chứng minh. Lời giải chi tiết :
Xét hai tam giác $OAC$ và $OBC$ có: $OA = OB = 2cm; OC$ là cạnh chung; $AC = BC = 3cm.$ Suy ra \(\Delta OAC = \Delta OBC(c.c.c)\) Do đó \(\widehat {AOC} = \widehat {COB}\) (hai góc tương ứng). Mà \(\widehat {AOC} + \widehat {COB} = {50^0}\) nên \(\widehat {AOC} = \widehat {COB} = \dfrac{{{{50}^0}}}{2} = {25^0}\) Vậy \(\widehat {xOC} = {25^0}\).
Câu 4 :
Cho tam giác $ABC$ có $AB < AC$ . Gọi \(E \in AC\) sao cho \(AB = CE\). Gọi $O$ là một điểm nằm ở trong tam giác sao cho $OA = OC,OB = OE.$ Khi đó:
Đáp án : B Lời giải chi tiết :
Xét tam giác $AOB$ và tam giác $COE$ có: $AB = CE\,\left( {gt} \right);AO = CO\,(gt);OB = OE\,(gt)$ Do đó: \(\Delta AOB = \Delta COE(c.c.c)\) suy ra \(\widehat {AOB} = \widehat {COE};\,\widehat {ABO} = \widehat {OEC}\) (hai góc tương ứng bằng nhau) Nên A, C, D sai, B đúng.
Câu 5 :
Cho tam giác $MNP$ có $MN = MP.$ Gọi $A$ là trung điểm của $NP.$ Biết \(\widehat {NMP} = {40^0}\) thì số đo góc $MPN$ là:
Đáp án : B Lời giải chi tiết :
Xét tam giác $NAM$ và tam giác $PAM$ có: $MN = MP,$ $NA = PA,$ $MA$ là cạnh chung. Do đó \(\Delta NAM = \Delta PAM\,\left( {c - c - c} \right).\) Suy ra \(\widehat {ANM} = \widehat {APM}\) (hai góc tương ứng), Ta có \(\widehat {ANM} = \widehat {APM}\)(cmt). Xét tam giác $MNP$ có: \(\widehat {NMP} + \widehat {MPN} + \widehat {PNM} = {180^0} \Rightarrow 2\widehat {MPN} + \widehat {NMP} = {180^0}\) \(\widehat {MPN} = \left( {{{180}^0} - \widehat {NMP}} \right):2 = \left( {{{180}^0} - {{40}^0}} \right):2 = {70^0}.\)
Câu 6 :
Cho tam giác $ABC$ có $AB = AC$ và $MB = MC$ (\(M \in BC\)). Chọn câu sai.
Đáp án : A Lời giải chi tiết :
Xét \(\Delta AMB\) và \(\Delta AMC\) có \(AB = AC\,\left( {gt} \right)\) \(MB = MC\left( {gt} \right)\) Cạnh \(AM\) chung Nên \(\Delta AMB = \Delta AMC\,\left( {c - c - c} \right)\) Suy ra \(\widehat {BAM} = \widehat {CAM}\) và $\widehat {AMB} = \widehat {AMC}$ (hai góc tương ứng bằng nhau) mà \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (hai góc kề bù) Nên $\widehat {AMB} = \widehat {AMC} = \dfrac{{180^\circ }}{2} = 90^\circ .$ Hay \(AM \bot BC.\) Vậy B, C, D đúng, A sai.
Câu 7 :
Cho đoạn thẳng \(AB = 6cm.\) Trên một nửa mặt hẳng bờ $AB$ vẽ tam giác $ABC$ sao cho \(AC = 4cm,\) \(BC = 5cm,\) trên nửa mặt phẳng còn lại vẽ tam giác $ABD$ sao cho \(BD = 4cm,\) \(AD = 5cm.\) Chọn câu đúng.
Đáp án : C Lời giải chi tiết :
Từ bài ra ta có \(AC = BD = 4\,cm;\,BC = AD = 5\,cm.\) Xét \(\Delta CAB\) và \(\Delta DBA\) có: \(AC = BD\,\left( {cmt} \right)\) \(BC = AD\,\left( {cmt} \right)\) Cạnh \(AB\) chung Nên \(\Delta CAB = \Delta DBA\,\left( {c - c - c} \right).\) Cho tam giác $ABD$ và tam giác $IKH$ có $AB = KI,AD = KH,DB = IH.$ Câu 8
Phát biểu nào trong các phát biểu sau đây là đúng:
Đáp án : D Lời giải chi tiết :
Xét tam giác $ABD$ và tam giác $KIH$ có: $AB = KI,AD = KH,DB = IH.$ Do đó \(\Delta ABD = \Delta KIH\)(c.c.c). Câu 9
Nếu \(\widehat A = {60^ \circ }\), thì số đo góc $K$ là:
Đáp án : A Phương pháp giải :
Tính chất hai tam giác bằng nhau Lời giải chi tiết :
Do \(\Delta ABD = \Delta KIH\) (theo câu trước), nên \(\widehat K = \widehat A = 60^\circ \) (hai góc tương ứng bằng nhau).
Câu 10 :
Cho hình dưới đây. Chọn câu sai.
Đáp án : D Phương pháp giải :
Dựa vào trường hợp bằng nhau thứ nhất của tam giác cạnh-cạnh-cạnh. Sử dụng dấu hiệu nhận biết hai đường thẳng song song. Lời giải chi tiết :
Xét tam giác \(ADC\) và \(CBA\) có $AB = CD$ $AD = BC$ $DB$ chung $ \Rightarrow \Delta ADC = CBA\left( {c.c.c} \right)$ Do đó \(\widehat {DAC} = \widehat {BCA}\) (hai góc tương ứng) mà hai góc ở vị trí so le trong nên \(AD//BC.\) Tương tự ta có \(AB//DC.\) Vậy A, B, C đúng, D sai.
Câu 11 :
Cho hai tam giác $ABD$ và $CDB$ có cạnh chung $BD.$ Biết $AB = DC$ và $AD = CB.$ Phát biểu nào sau đây là sai:
Đáp án : C Phương pháp giải :
Dựa vào tính chất của hai tam giác bằng nhau. Lời giải chi tiết :
Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(AB = CD\left( {gt} \right)\) \(BD{\rm{ chung}}\) \(AD = BC\left( {gt} \right)\) \( \Rightarrow \Delta ABC = \Delta CDA\left( {c.c.c} \right)\) \( \Rightarrow \widehat {ABC} = \widehat {CDA},\widehat {BAC} = \widehat {DCA},\widehat {BCA} = \widehat {DAC}\) (góc tương ứng) Vậy đáp án $C$ là sai.
Câu 12 :
Cho hình vẽ sau. Tam giác nào bằng với tam giác \(ABC?\)
Đáp án : C Lời giải chi tiết :
Từ hình vẽ ta thấy \(AB = AE;\,BC = DE;\,AC = AD\) nên \(\Delta ABC = \Delta AED\,\left( {c - c - c} \right).\)
|