Trắc nghiệm Bài 1: Góc ở vị trí đặc biệt Toán 7 Cánh diều

Đề bài

Câu 1 :

Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

  • A

    \(\widehat {z'At'}\)

  • B

    \(\widehat {z'At}\)     

  • C

    \(\widehat {zAt'}\) \(\)

  • D

    \(\widehat {zAt}\)

Quảng cáo
decumar
Câu 2 :

Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

  • A

    $30^\circ$

  • B

    $120^\circ$

  • C

    $90^\circ$

  • D

    $60^\circ$

Câu 3 :

Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau  tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

  • A

    $\widehat {x'Oy} = 135^\circ $                   

  • B

    $\widehat {x'Oy'} = 45^\circ $

  • C

    $\widehat {xOy'} = 135^\circ $

  • D

    $\widehat {x'Oy'} = 135^\circ $

Câu 4 :

Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

  • A

    \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

  • B

    \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

  • C

    \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

  • D

    \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

Câu 5 :

Vẽ góc $xOy$ có số đo bằng  $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

  • A

    \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)                

  • B

    \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

  • C

    \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)  

  • D

    \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

Câu 6 :

Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại $O$ tạo thành \(\widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)

  • A

    \(\widehat {BON} = \widehat {DON} = 25^\circ \)           

  • B

    \(\widehat {BON} = \widehat {DON} = 30^\circ \)           

  • C

    \(\widehat {BON} = \widehat {DON} = 60^\circ \)           

  • D

    \(\widehat {BON} = \widehat {DON} = 45^\circ \)

Câu 7 :

Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

  • A

    \(\widehat {AOC} = 110^\circ \)     

  • B

    \(\widehat {BOC} = 65^\circ \)

  • C

    \(\widehat {BOD} = 120^\circ \)

  • D

    \(\widehat {AOD} = 50^\circ \)

Câu 8 :

Cho hình vẽ sau. Biết góc $xOy'$  đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

  • A

    \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)              

  • B

    \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)              

  • C

    \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)   

  • D

    \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

Lời giải và đáp án

Câu 1 :

Hai đường thẳng zz’ và tt’ cắt nhau tại $A$. Góc đối đỉnh với \(\widehat {zAt'}\) là:

  • A

    \(\widehat {z'At'}\)

  • B

    \(\widehat {z'At}\)     

  • C

    \(\widehat {zAt'}\) \(\)

  • D

    \(\widehat {zAt}\)

Đáp án : B

Phương pháp giải :

Áp dụng định nghĩa hai góc đối đỉnh, xác định tia đối của tia \(Az\) và \(At'\), từ đó xác định góc đối đỉnh với \(\widehat {zAt'}\).

Lời giải chi tiết :

 Vì hai đường thẳng $zz'$  và $tt'$  cắt nhau tại $A$  nên $Az'$  là tia đối của tia $Az,At'$ là tia đối của tia $At.$ Vậy góc đối đỉnh với \(\widehat {zAt'}\) là \(\widehat {z'At}\).

Câu 2 :

Cho góc \(xBy\) đối đỉnh với góc \(x'By'\) và \(\widehat {xBy} = 60^\circ \) . Tính số đo góc \(x'By'.\)

  • A

    $30^\circ$

  • B

    $120^\circ$

  • C

    $90^\circ$

  • D

    $60^\circ$

Đáp án : D

Phương pháp giải :

Áp dụng tính chất: Hai góc đối đỉnh thì bằng nhau.

Lời giải chi tiết :

Vẽ \(\widehat {x'By'}\) là góc đối đỉnh với \(\widehat {xBy}\). Khi đó:

\(\widehat {x'By'} = \widehat {xBy} = {60^o}\) (tính chất hai góc đối đỉnh)

Câu 3 :

Cho hai đường thẳng \(xx'\) và \(yy'\) giao nhau  tại \(O\) sao cho \(\widehat {xOy} = 45^\circ \) . Chọn câu sai.

  • A

    $\widehat {x'Oy} = 135^\circ $                   

  • B

    $\widehat {x'Oy'} = 45^\circ $

  • C

    $\widehat {xOy'} = 135^\circ $

  • D

    $\widehat {x'Oy'} = 135^\circ $

Đáp án : D

Phương pháp giải :

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

Lời giải chi tiết :

Vì hai đường thẳng $xx'$  và $yy'$  cắt nhau tại $O$  nên $Ox'$  là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 45^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 45^\circ \)

\( \Rightarrow \widehat {x'Oy} = 135^\circ \)

Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 135^\circ .\)

Suy ra A, B, C đúng, D sai.

Câu 4 :

Cho cặp góc đối đỉnh \(\widehat {tOz}\) và \(\widehat {t'Oz'}\) (\(Oz\) và $Oz'$ là hai tia đối nhau). Biết \(\widehat {tOz'} = 4.\widehat {tOz}\). Tính các góc \(\widehat {tOz}\) và \(\widehat {t'Oz'}.\)

  • A

    \(\widehat {zOt} = \widehat {z'Ot'} = 72^\circ \)

  • B

    \(\widehat {zOt} = \widehat {z'Ot'} = 30^\circ \)

  • C

    \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ \)

  • D

    \(\widehat {zOt} = 72^\circ ;\,\widehat {z'Ot'} = 36^\circ \)

Đáp án : C

Phương pháp giải :

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

Lời giải chi tiết :

Ta có \(\widehat {zOt} + \widehat {tOz'} = 180^\circ \) (hai góc kề bù) mà \(\widehat {tOz'} = 4.\widehat {tOz}\) \( \Rightarrow \widehat {zOt} + 4.\widehat {zOt} = 180^\circ \) \( \Rightarrow 5.\widehat {zOt} = 180^\circ  \Rightarrow \widehat {zOt} = 36^\circ \)

Vì  \(\widehat {tOz}\) và \(\widehat {t'Oz'}\)  là hai góc đối đỉnh nên \(\widehat {zOt} = \widehat {z'Ot'} = 36^\circ .\)

Câu 5 :

Vẽ góc $xOy$ có số đo bằng  $35^\circ$. Vẽ góc $x'Oy'$ đối đỉnh với góc $xOy.$ Viết tên các góc có số đo bằng $145^o.$

  • A

    \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy'}\)                

  • B

    \(\widehat {xOy}\,\,;\,\,\widehat {x'Oy'}\)

  • C

    \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)  

  • D

    \(\widehat {xOy'}\,\,;\,\,\widehat {xOy}\)

Đáp án : C

Phương pháp giải :

Áp dụng tính chất hai góc đối đỉnh, tính chất hai góc kề bù để tính các góc còn lại.

Lời giải chi tiết :

Vì hai đường thẳng $xx'$  và $yy'$  cắt nhau tại $O$  nên $Ox'$  là tia đối của tia $Ox;Oy'$ là tia đối của tia $Oy.$

Suy ra \(\widehat {xOy}\) và \(\widehat {x'Oy'}\) ; \(\widehat {x'Oy}\) và \(\widehat {xOy'}\) là hai cặp góc đối đỉnh.

Do đó \(\widehat {x'Oy'} = \widehat {xOy} = 35^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'}\)

Lại có \(\widehat {xOy}\) và \(\widehat {x'Oy}\) là hai góc ở vị trí kề bù nên \(\widehat {xOy} + \widehat {x'Oy} = 180^\circ \)\( \Rightarrow 35^\circ  + \widehat {x'Oy} = 180^\circ  \Rightarrow \widehat {x'Oy} = 180^\circ  - 35^\circ \)

\( \Rightarrow \widehat {x'Oy} = 145^\circ \)

Vậy \(\widehat {x'Oy'} = \widehat {xOy} = 45^\circ \) và \(\widehat {x'Oy} = \widehat {xOy'} = 145^\circ .\)

Hai góc có số đo bằng ${145^o}$  là : \(\widehat {xOy'}\,\,;\,\,\widehat {x'Oy}\)

Câu 6 :

Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại $O$ tạo thành \(\widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)

  • A

    \(\widehat {BON} = \widehat {DON} = 25^\circ \)           

  • B

    \(\widehat {BON} = \widehat {DON} = 30^\circ \)           

  • C

    \(\widehat {BON} = \widehat {DON} = 60^\circ \)           

  • D

    \(\widehat {BON} = \widehat {DON} = 45^\circ \)

Đáp án : B

Phương pháp giải :

+ Sử dụng tính chất tia phân giác tính các góc \(\widehat {AOM};\widehat {COM}\)

+ Sử dụng tính chất hai góc đối đỉnh để suy ra hai góc \(\widehat {BON}\) và \(\widehat {DON}.\)

Lời giải chi tiết :

Vì \(AB\) và \(CD\) cắt nhau tại \(O\) nên \(OA\) và \(OB\) là hai tia đối nhau, \(OC\) và \(OD\) là hai tia đối nhau.

Vì \(OM\) là tia phân giác \(\widehat {COA}\) nên \(\widehat {AOM} = \widehat {COM} = \dfrac{{\widehat {COA}}}{2} = \dfrac{{60}}{2} = 30^\circ \)

Mà \(ON\) và \(OM\) là hai tia đối nhau nên \(\widehat {AOM}\) và \(\widehat {BON}\) là hai góc đối đỉnh; \(\widehat {COM}\) và \(\widehat {DON}\) là hai góc đối đỉnh

Suy ra \(\widehat {AOM} = \widehat {BON} = 30^\circ ;\widehat {COM} = \widehat {DON} = 30^\circ \) hay \(\widehat {BON} = \widehat {DON} = 30^\circ .\)

Câu 7 :

Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

  • A

    \(\widehat {AOC} = 110^\circ \)     

  • B

    \(\widehat {BOC} = 65^\circ \)

  • C

    \(\widehat {BOD} = 120^\circ \)

  • D

    \(\widehat {AOD} = 50^\circ \)

Đáp án : B

Phương pháp giải :

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

Lời giải chi tiết :

 

Vì \(\widehat {AOD}\) và \(\widehat {AOC}\) là hai góc kề bù nên \(\widehat {AOD} + \widehat {AOC} = 180^\circ \) mà \(\widehat {AOC} - \widehat {AOD} = 50^\circ \)

Nên \(\widehat {AOC} = \dfrac{{180^\circ  + 50^\circ }}{2} = 115^\circ \) và \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 65^\circ \)

Mà \(\widehat {AOD}\) và \(\widehat {BOC}\) là hai góc đối đỉnh nên \(\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

Lại có \(\widehat {BOD}\) và \(\widehat {AOC}\) là hai góc đối đỉnh nên \(\widehat {BOD} = \widehat {AOC} = 115^\circ .\)

Vậy \(\widehat {BOD} = \widehat {AOC} = 115^\circ ;\,\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

Câu 8 :

Cho hình vẽ sau. Biết góc $xOy'$  đối đỉnh với góc $x'Oy,$ biết \(\widehat {xOy'} = {\widehat O_1} = {165^o}\). Tính các góc đỉnh O (khác góc bẹt).

  • A

    \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)              

  • B

    \({\widehat O_2} = {165^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {15^o}\,\,\)              

  • C

    \({\widehat O_2} = {15^o};\,{\widehat O_3} = {15^o};\,\,{\widehat O_4} = {165^o}\,\,\)   

  • D

    \({\widehat O_2} = {15^o};\,{\widehat O_3} = {165^o};\,\,{\widehat O_4} = {15^o}\,\,\)

Đáp án : B

Phương pháp giải :

 Áp dụng tính chất hai góc đối đỉnh, hai góc kề bù để tính các góc còn lại.

Lời giải chi tiết :

\({\widehat O_2} = {\widehat O_1} = {165^o}\) (tính chất hai góc đối đỉnh)

Góc ${O_1}$  và góc ${O_4}$ là hai góc kề bù

\( \Rightarrow {\widehat O_1} + {\widehat O_4} = {180^o}\)

\( \Rightarrow {\widehat O_4} = {180^o} - {\widehat O_1}\)

\( \Rightarrow {\widehat O_4} = {180^o} - {165^o} = {15^o}\)

\({\widehat O_3} = {\widehat O_4} = {15^o}\,\) (hai góc đối đỉnh)

close