Giải bài 6 trang 63 SGK Toán 7 tập 2 - Chân trời sáng tạo

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b. a) Cho biết

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b.

a) Cho biết \(\widehat {{A_1}}\)\( = {42^o}\). Tính số đo của \(\widehat {{M_1}}\),\(\widehat {{B_1}}\),\(\widehat {{M_2}}\).

b) Chứng minh MN // BC, MP // AC.

c) Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của tam giác cân

Lời giải chi tiết

a)      Ta thấy tam giác AMN cân tại A do AM = AN

\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)

Ta thấy tam giác PMN = tam giác AMN ( c-c-c )

\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )

Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )

\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)

Mà tam giác MPB cân tại M do MB = MP nên

\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)

Áp dụng định lí tổng 3 góc trong tam giác

\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)

b)      Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên

\( \Rightarrow \)MN⫽BC

Vì tam giác PMN = tam giác AMN nên ta có

\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )

Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong

\( \Rightarrow \)MP⫽AC

c)      Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)

Vì MP⫽AC ( chứng minh trên )

\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)

\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)

Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau 

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close