Giải Bài 8 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo

Ở Hình 1, cho biết AE = AF và.

Quảng cáo

Đề bài

Ở Hình 1, cho biết AE = AF và \(\widehat {ABC} = \widehat {ACB}\). Chứng minh AH là đường trung trực của BC.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Ta chứng minh A và H cùng thuộc đường trung trực của đoạn BC thông qua chứng minh chúng cách đều 2 đầu mút của đoạn BC.

Lời giải chi tiết

Theo giả thiết ta có tam giác ABC cân tại A do có 2 góc đáy bằng nhau

\( \Rightarrow \)A cách đều 2 đều B, C

\( \Rightarrow \) A thuộc trung trực đoạn thẳng BC (1) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)

Xét \(\Delta \)AEC và \(\Delta \)AFB ta có :

AE = AF

Góc A chung

AC = AB

\( \Rightarrow \Delta AEC = \Delta AFB\)(c-g-c)

\( \Rightarrow \widehat {ECA} = \widehat {FBA}\)(góc tương ứng)

Ta có: \(\widehat {ABC} = \widehat {ABF} + \widehat {FBC}\)

           \(\widehat {ACB} = \widehat {ACE} + \widehat {ECB}\)

Mà \(\widehat {ACB} = \widehat {ABC}\)(giả thiết) và \(\widehat {ECA} = \widehat {FBA}\)(chứng minh trên)

\( \Rightarrow \widehat {ECB} = \widehat {FBC}\)\( \Rightarrow \)\(\Delta \)HBC cân tại H do có 2 góc đáy bằng nhau

\( \Rightarrow \) H cách đều BC \( \Rightarrow \) H thuộc trung trực BC (2) (Tính chất điểm cách đều 2 đầu mút đoạn thẳng)

Từ (1) và (2) \( \Rightarrow \) AH là trung trực của BC 

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close