Giải Bài 2 trang 65 sách bài tập toán 7 - CTST

Cho tam giác ABC có M là điểm đồng quy của ba đường phân giác. Qua M vẽ đường thẳng song song với Bc và cắt AB, AC lần lượt tại N và P. Chứng minh rằng NP = BN + CP.

Tổng hợp đề thi giữa kì 2 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - KHTN...

Quảng cáo

Đề bài

Cho tam giác ABC có M là điểm đồng quy của ba đường phân giác. Qua M vẽ đường thẳng song song với Bc và cắt AB, AC lần lượt tại N và P. Chứng minh rằng

 NP = BN + CP.

Phương pháp giải - Xem chi tiết

- Chứng minh MN = BN

- Chứng minh MP = CP

Suy ra: NP = MN + MP = BN + CP

Lời giải chi tiết

Ta có MN // BC, do đó ^M1=^B1 (so le trong)

Dẫn đến ^M1=^B2(cùng bằng ^B1), suy ra tam giác NMB cân tại N nên  MN = BN

Ta có MP // BC, do đó ^M2=^C2 (so le trong)

Dẫn đến ^M2=^C1(cùng bằng ^C2), suy ra tam giác PMC cân tại P nên  MP = CP

Ta có: NP = MN + MP = BN + CP.

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.

close