Bài 134 trang 23 SBT toán 6 tập 1Giải bài 134 trang 23 SBT toán 6. Điền chữ số vào dấu * để : a) 3*5 chia hết cho 3 b) 7*2 chia hết cho 9 c) *63* chia hết cho 2, 3, 5, 9 Quảng cáo
Đề bài Điền chữ số vào dấu \(*\) để : \(a)\) \(\overline {3*5} \) chia hết cho \(3\) \(b)\) \(\overline {7*2} \) chia hết cho \(9\) \(c)\) \(\overline {*63*} \) chia hết cho \(2, 3, 5, 9\) Phương pháp giải - Xem chi tiết +) Dấu hiệu chia hết cho \(3\): Tổng các chữ số chia hết \(3\) +) Dấu hiệu chia hết cho \(9\): Tổng các chữ số chia hết \(9\) +) Dấu hiệu chia hết cho \(2\): Chữ số tận cùng là chữ số chẵn. +) Dấu hiệu chia hết cho \(5\): Chữ số tận cùng là \(0\) hoặc \(5\). Lời giải chi tiết \(a)\) Ta có: \(\overline {3*5}\) \(\vdots\,3\) thì \( \left[ {3 + \left( * \right) + 5} \right] \vdots \,\,3\) hay \(\ \left[ {8 + \left( * \right)} \right] \vdots\) \( 3\) Suy ra: \(\left( * \right) \in \left\{ {1;4;7} \right\}\) Vậy ta có các số: \(315; 345; 375\) \(b)\) Ta có: \(\overline {7*2}\) \(\vdots\,9\) thì \( \left[ {7 + \left( * \right) + 2} \right] \vdots\,\,9\) hay \( \left[ {9 + \left( * \right)} \right] \vdots\) \( 9\) Suy ra: \(\left( * \right) \in \left\{ {0;9} \right\}\) Vậy ta có các số: \(702; 792\) \(c)\) \(\overline {*63*} \) chia hết cho \(2\) và \(5\) nên chữ số hàng đơn vị là \(0.\) Ta có \(\overline {*630}\) \(\vdots\, 9\) thì \( \left[ {\left( * \right) + 6 + 3 + 0} \right] \vdots\,\,9\) hay \( \left[ {9 + \left( * \right)} \right] \vdots\) \( 9\) Suy ra \(\left( * \right) \in \left\{ {0;9} \right\}\) Vì \(\left( * \right)\) ở vị trí hàng nghìn nên phải khác \(0\) để thỏa mãn là số có \(4\) chữ số Ta chọn \(\left( * \right)\) bằng \(9.\) Vậy ta có số: \(9630.\) Loigiaihay.com
Quảng cáo
|