Bài 156 trang 25 SBT toán 6 tập 1

Giải bài 156 trang 25 sách bài tập toán 6. Cho biết: Nếu số tự nhiên a (lớn hơn 1) không chia hết cho mọi số nguyên tố p mà bình phương không vượt quá a thì a là số nguyên tố. Dùng nhận xét trên cho biết số nào trong các số a ở bài 153 là số nguyên tố?

Quảng cáo

Đề bài

Cho biết: Nếu số tự nhiên \(a\) (lớn hơn \(1\)) không chia hết cho mọi số nguyên tố \(p\) mà bình phương không vượt quá \(a\) (tức là \({p^2} \le a\)) thì \(a\) là số nguyên tố. Dùng nhận xét trên cho biết số nào trong các số \(a\) ở bài \(153\) là số nguyên tố.

Phương pháp giải - Xem chi tiết

+) Sử dụng nhận xét đã cho để làm.

+) Ta chia số \(a\) đó lần lượt cho các số nguyên tố \(p\) mà \(p^2 \le a\).

Lời giải chi tiết

\(*\) Ta có: \(59\,\not {\vdots}\,2;\)  \(59\,\not {\vdots\,3;}\)  \(59\,\not {\vdots}\,5;\)  \(59\,\not  {\vdots}\,7\)

Mà \({7^2} = 49 < 59;{11^2} = 121 > 59\)

Vậy \(59\) là số nguyên tố.

\(*\) Ta có:  \(121\)  \(\not {\vdots} \) \(2 ;\;121\)  \(\not {\vdots} \) \(3 ;\;121\)  \(\not {\vdots}\;5 ;\) \(121  \not {\vdots}\; 7; \) \(121 \; ⋮\;  11\) 

Vậy \(121\) là hợp số 

\(*\) Ta có:  \(179\, \not {\vdots}\; 2; \) \(179\,\not {\vdots}\; 3; \) \(179\, \not{\vdots}\; 5 \) \(179\, \not  {\vdots}\;7; \) \(179\, \not{\vdots}\; 11; \) \(179\, \not {\vdots}\; 13. \) 

Mà \({13^2} = 169 < 179;{17^2} = 289 > 179\)

Vậy \(179\) là số nguyên tố.

* Ta có: \(197\, \not{\vdots}\,\;2; \) \(197\, \not{\vdots}\;3; \) \(197\, \not{\vdots}\;5; \) \(197\, \not{\vdots}\;7; \) \(197\, \not{\vdots}\,\,11; \) \(197\, \not{\vdots}\,\,13. \)

Mà \({13^2} = 169 < 197;{17^2} = 289 > 197\)

Vậy \(197\) là số nguyên tố.

\(*\) Ta có:   \(217\, \not {\vdots}\; 2; \) \(217\, \not {\vdots}\; 3; \) \(217\, \not {\vdots}\; 5; \) \(217\, {\vdots}\; 7; \) \(217\, \not {\vdots}\; 11; \) \(217\, \not {\vdots}\; 13. \)

Vậy \(217\) là hợp số.

Loigiaihay.com

  • Bài 157 trang 25 SBT toán 6 tập 1

    Giải bài 157 trang 25 sách bài tập toán 6. a) Số 2009 có là bội số của 41 không?...

  • Bài 158 trang 25 SBT toán 6 tập 1

    Giải bài 158 trang 25 sách bài tập toán 6. Gọi a = 2.3.4.5. … .101. Có phải 100 số tự nhiên liên tiếp sau đều là hợp số không?...

  • Bài 14.1 phần bài tập bổ sung trang 25 SBT toán 6 tập 1

    Giải bài 14.1 phần bài tập bổ sung trang 25 sách bài tập toán 6. Có bao nhiêu số nguyên tố có hai chữ số mà chữ số hàng đơn vị là 1? Hãy chọn phương án đúng...

  • Bài 14.2 phần bài tập bổ sung trang 25 SBT toán 6 tập 1

    Giải bài 14.2 phần bài tập bổ sung trang 25 sách bài tập toán 6. Tìm số tự nhiên abc có ba chữ số khác nhau, chia hết cho các số nguyên tố a, b, c.

  • Bài 155 trang 25 SBT toán 6 tập 1

    Giải bài 155 trang 25 sách bài tập toán 6. a) Nhà toán học Đức Gôn –bach viết thư cho nhà toán học Thụy Sỹ Ơ – le năm 1742 nói rằng: Mọi số tự nhiên lớn hơn 5 đều viết được dưới dạng tổng của ba số nguyên tố. Hãy viết các số 6,7,8 dưới dạng tổng của ba số nguyên tố...

Quảng cáo

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close