Giải bài 6 trang 10, 11 vở thực hành Toán 7 tập 2

Một trường Trung học cơ sở có số học sinh của bốn khối lớp 6, 7, 8, 9 tỉ lệ với các số 11; 10; 9; 8. Biết rằng số học sinh của khối 6 nhiều hơn số học sinh của khối 9 là 60 em. Hãy tính số học sinh của mỗi khối lớp.

Quảng cáo

Đề bài

Một trường Trung học cơ sở có số học sinh của bốn khối lớp 6, 7, 8, 9 tỉ lệ với các số 11; 10; 9; 8. Biết rằng số học sinh của khối 6 nhiều hơn số học sinh của khối 9 là 60 em. Hãy tính số học sinh của mỗi khối lớp.

Phương pháp giải - Xem chi tiết

+ Nếu x, y, z tỉ lệ với a, b, c nghĩa là ta có $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$.

+ Áp dụng tính chất của dãy tỉ số bằng nhau \(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\).

Lời giải chi tiết

Gọi x, y, z, t lần lượt là số học sinh của các khối lớp 6, 7, 8, 9.

Theo đề bài, ta có \(\frac{x}{{11}} = \frac{y}{{10}} = \frac{z}{9} = \frac{t}{8}\) và \(x - t = 60\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{11}} = \frac{y}{{10}} = \frac{z}{9} = \frac{t}{8} = \frac{{x - t}}{{11 - 8}} = \frac{{60}}{3} = 20\)

Suy ra \(x = 20.11 = 220;y = 20.10 = 200;\) \(z = 20.9 = 180;t = 20.8 = 160\).

Vậy số học sinh của các khối lớp 6, 7, 8, 9 lần lượt là 220 học sinh, 200 học sinh, 180 học sinh và 160 học sinh.

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close