-
Bài 1 trang 64
Bài 1 (4.12). Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Xem chi tiết -
Bài 2 trang 64
Bài 2 (4.13). Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như hình vẽ. a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau. b) Chứng minh rằng \(\Delta DAB = \Delta BCD\).
Xem chi tiết -
Bài 3 trang 65
Bài 3 (4.14). Chứng minh rằng hai tam giác ADE và BCE trong hình dưới đây bằng nhau.
Xem chi tiết -
Bài 4 trang 65
Bài 4 (4.15). Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như hình dưới đây. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G,H,E thẳng hàng Chứng minh rằng a) \(\Delta ABE = \Delta DCE\) b) EG = EH.
Xem chi tiết -
Bài 5 trang 65
Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\)
Xem chi tiết -
Bài 6 trang 66
Bài 6. Cho hình vẽ dưới đây, biết rằng AC = BD, BC = AD, \(\widehat {CAD} = {90^o},\widehat {DAB} = {30^o}\). Chứng minh rằng \(\Delta ABC = \Delta BAD\)
Xem chi tiết