Giải bài 3 trang 67 vở thực hành Toán 7 tập 2Cho tam giác ABC có (widehat A:widehat B:widehat C = 5:4:6). Tính các góc của tam giác ABC, từ đó hãy so sánh độ dài ba cạnh của tam giác ABC. Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên... Quảng cáo
Đề bài Cho tam giác ABC có \(\widehat A:\widehat B:\widehat C = 5:4:6\). Tính các góc của tam giác ABC, từ đó hãy so sánh độ dài ba cạnh của tam giác ABC. Phương pháp giải - Xem chi tiết + Chỉ ra \(\frac{{\widehat A}}{5} = \frac{{\widehat B}}{4} = \frac{{\widehat C}}{6} = \frac{{\widehat A + \widehat B + \widehat C}}{{5 + 4 + 6}} = \frac{{{{180}^o}}}{{15}} = {12^o}\), từ đó tính được các góc A, B, C. + Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn. Lời giải chi tiết Ta có \(\widehat A:\widehat B:\widehat C = 5:4:6\), nghĩa là \(\frac{{\widehat A}}{5} = \frac{{\widehat B}}{4} = \frac{{\widehat C}}{6}\). Theo tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{{\widehat A}}{5} = \frac{{\widehat B}}{4} = \frac{{\widehat C}}{6} = \frac{{\widehat A + \widehat B + \widehat C}}{{5 + 4 + 6}} = \frac{{{{180}^o}}}{{15}} = {12^o}\) Suy ra \(\widehat A = {60^o},\widehat B = {48^o},\widehat C = {72^o}\). Do đó, \(\widehat B < \widehat A < \widehat C\), suy ra \(AC < BC < AB\).
Quảng cáo
|