Dạng 3: Các bài toán về số tự nhiên và tổng, hiệu các chữ số của nó Toán nâng cao lớp 5

Tải về

Tìm số tự nhiên có hai chữ số, biết rằng: Số đó gấp 5 lần tổng các chữ số của nó? Tìm một số có hai chữ số, biết rằng số đó chia cho hiệu các chữ số của nó được thương bằng 28 và dư 1?

Tổng hợp đề thi vào lớp 6 các trường

Có đáp án và lời giải chi tiết

Quảng cáo

Phân tích cấu tạo của một số tự nhiên:

$\overline {ab}  = a \times 10 + b$

$\overline {abc}  = a \times 100 + b \times 10 + c = \overline {ab}  \times 10 + c = a \times 100 + \overline {bc} $

$\overline {abcd}  = a \times 1000 + b \times 100 + c \times 10 + d = \overline {abc}  \times 10 + d = a \times 1000 + \overline {bcd} $

 

Một số cách phân tích số đặc biệt:

$\overline {a00}  = a \times 100$

\(\overline {aaa}  = a \times 111\)

$\overline {abab}  = \overline {ab}  \times 101$

$\overline {ababab}  = \overline {ab}  \times 10101$

Ví dụ 1: Tìm số tự nhiên có hai chữ số, biết rằng: Số đó gấp 5 lần tổng các chữ số của nó?

Giải

Gọi số cần tìm là $\overline {ab} $. Theo đề bài ta có:

$\overline {ab}  = 5 \times (a + b)$

10 x a + b = 5 x a + 5 x b

10 x a – 5 x a = 5 x b – b

(10 – 5) x a = (5 – 1) x b

5 x a = 4 x b

Từ đây ta suy ra b chia hết cho 5. Vậy b = 0 hoặc 5

- Nếu b = 0 thì a = 0 (loại)

- Nếu b = 5 thì 5 x a = 20, vậy a = 4

Vậy số cần tìm là 45.

 

Ví dụ 2: Tìm một số có hai chữ số, biết rằng số đó chia cho hiệu các chữ số của nó được thương bằng 28 và dư 1?

Giải:

Gọi số cần tìm là $\overline {ab} $ và hiệu các chữ số của nó là c.

Theo đề bài ta có:

$\overline {ab}  = c \times 28 + 1$

Vì $\overline {ab}  < 100$ nên c x 28 < 99

Vậy c = 1; 2 hoặc 3

- Nếu c = 1 thì $\overline {ab}  = 29$

Thử lại: 9 – 2 = 7; 29 : 7 = 4 (dư 1) (loại)

- Nếu c = 2 thì $\overline {ab}  = 57$

Thử lại: 7 – 5 = 2; 57 : 2 = 28 (dư 1)

- Nếu c = 3 thì $\overline {ab}  = 85$

Thử lại: 8 – 5 = 3; 85 : 3 = 28 (dư 1)

Vậy số cần tìm là 57 hoặc 85.

 

Tải về

Quảng cáo

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close