Trắc nghiệm Bài 2: Tia phân giác Toán 7 Chân trời sáng tạoLàm bài tập
Câu hỏi 1 :
Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại $O$ tạo thành \(\widehat {AOC} = 60^\circ \) . Gọi \(OM\) là phân giác \(\widehat {AOC}\) và \(ON\) là tia đối của tia \(OM\). Tính \(\widehat {BON}\) và \(\widehat {DON}.\)
Đáp án của giáo viên lời giải hay : B Phương pháp giải :
+ Sử dụng tính chất tia phân giác tính các góc \(\widehat {AOM};\widehat {COM}\) + Sử dụng tính chất hai góc đối đỉnh để suy ra hai góc \(\widehat {BON}\) và \(\widehat {DON}.\) Lời giải chi tiết :
![]() Vì \(AB\) và \(CD\) cắt nhau tại \(O\) nên \(OA\) và \(OB\) là hai tia đối nhau, \(OC\) và \(OD\) là hai tia đối nhau. Vì \(OM\) là tia phân giác \(\widehat {COA}\) nên \(\widehat {AOM} = \widehat {COM} = \dfrac{{\widehat {COA}}}{2} = \dfrac{{60}}{2} = 30^\circ \) Mà \(ON\) và \(OM\) là hai tia đối nhau nên \(\widehat {AOM}\) và \(\widehat {BON}\) là hai góc đối đỉnh; \(\widehat {COM}\) và \(\widehat {DON}\) là hai góc đối đỉnh Suy ra \(\widehat {AOM} = \widehat {BON} = 30^\circ ;\widehat {COM} = \widehat {DON} = 30^\circ \) hay \(\widehat {BON} = \widehat {DON} = 30^\circ .\)
Câu hỏi 2 :
Hai đường thẳng $xy$ và $x'y'$ cắt nhau tại $O.$ Biết \(\widehat {xOx'} = {70^o}\). $Ot$ là tia phân giác của góc xOx’. $Ot'$ là tia đối của tia $Ot.$ Tính số đo góc $yOt'.$
Đáp án của giáo viên lời giải hay : A Phương pháp giải :
Sử dụng tính chất tia phân giác của một góc. Áp dụng tính chất hai góc đối đỉnh để tính số đo góc $yOt'.$ Lời giải chi tiết :
![]() Vì $Ot$ là tia phân giác của góc $xOx'$ nên \(\widehat {xOt} = \widehat {tOx'} = \dfrac{1}{2}\widehat {xOx'} = \dfrac{1}{2}{.70^o} = {35^o}\) Vì $Oy$ là tia đối của $Ox,Ot'$ là tia đối của $Ot$ \( \Rightarrow \widehat {yOt'} = \widehat {xOt} = {35^o}\) (tính chất hai góc đối đỉnh).
Câu hỏi 3 :
Cho góc bẹt \(xOy\). Trên cùng một nửa mặt phẳng bờ \(xy\) vẽ các tia \(Om;On\) sao cho \(\widehat {xOm} = a^\circ \,\left( {a < 180} \right)\) và \(\widehat {yOn} = 70^\circ .\) Với giá trị nào của \(a\) thì tia \(On\) là tia phân giác của \(\widehat {yOm}\).
Đáp án của giáo viên lời giải hay : D Phương pháp giải :
Sử dụng tính chất tia phân giác và tính chất hai góc kề bù. Lời giải chi tiết :
Giả sử tia \(On\) là tia phân giác của góc \(yOm\) thì \(\widehat {mOy} = 2.\widehat {yOn} = 2.70^\circ = 140^\circ \). Mà hai góc \(\widehat {xOm};\widehat {yOm}\) là hai góc kề bù nên \(\widehat {xOm} + \widehat {yOm} = 180^\circ \)\( \Rightarrow \widehat {xOm} = 180^\circ - \widehat {yOm}\) \( = 180^\circ - 140^\circ = 40^\circ \). Vậy \(a = 40 ^\circ\).
Câu hỏi 4 :
Cho hai góc kề bù \(\widehat {AOB};\,\widehat {BOC}\). Vẽ tia phân giác \(OM\) của góc \(BOA\) . Biết số đo góc \(MOC\) gấp \(5\) lần số đo góc \(AOM\). Tính số đo góc \(BOC\).
Đáp án của giáo viên lời giải hay : A Phương pháp giải :
+ Sử dụng tính chất hai góc kề bù và tính chất tia phân giác của một góc để tính toán Lời giải chi tiết :
![]() Vì hai góc kề bù \(\widehat {AOB};\,\widehat {BOC}\) nên \(\widehat {AOC} = 180^\circ \) hay \(OA;OC\) là hai tia đối nhau. Suy ra hai góc \(\widehat {MOC};\widehat {MOA}\) là hai góc kề bù nên \(\widehat {MOA} + \widehat {MOC} = 180^\circ \) mà \(\widehat {MOC} = 5.\widehat {MOA}\) (gt) Nên \(\widehat {MOA} + 5.\widehat {MOA} = 180^\circ \Rightarrow 6.\widehat {MOA} = 180^\circ \) suy ra \(\widehat {MOA} = 180^\circ :6 = 30^\circ \) Mà tia phân giác \(OM\) của góc \(BOA\) nên \(\widehat {BOA} = 2.\widehat {MOA} = 2.30^\circ = 60^\circ \) Lại có hai góc kề bù \(\widehat {AOB};\,\widehat {BOC}\) nên \(\widehat {AOB} + \,\widehat {BOC} = 180^\circ \) suy ra \(\widehat {BOC} = 180^\circ - \widehat {AOB} = 180^\circ - 60^\circ = 120^\circ \) Vậy \(\widehat {BOC} = 120^\circ \).
Câu hỏi 5 :
Cho góc \(AOB\) và tia phân giác \(OC\) của góc đó. Vẽ tia phân giác \(OM\) của góc \(BOC.\) Biết \(\widehat {BOM} = 35^\circ .\) Tính số đo góc \(AOB.\)
Đáp án của giáo viên lời giải hay : C Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tiam phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
![]() Vì tia \(OM\) là tia phân của góc \(BOC\) nên \(\widehat {BOC} = 2.\widehat {BOM} = 2.35^\circ = 70^\circ \) Lại có tia \(OC\) là tia phân giác của \(\widehat {AOB}\) nên \(\widehat {AOB} = 2.\widehat {BOC} = 2.70^\circ = 140^\circ \). Vậy \(\widehat {AOB} = 140^\circ \).
Câu hỏi 6 :
Cho \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù. Biết \(\widehat {xOy} = 120^\circ \) và tia \(Ot\) là tia phân giác của \(\widehat {yOz}.\) Tính số đo góc \(xOt.\)
Đáp án của giáo viên lời giải hay : B Phương pháp giải :
+ Sử dụng: Hai góc kề bù có tổng số đo bằng \(180^\circ \) và tính chất tia phân giác của một góc để tính toán. Lời giải chi tiết :
Vì \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù nên \(\widehat {xOy} + \widehat {yOz} = 180^\circ \) mà \(\widehat {xOy} = 120^\circ \) nên \(\widehat {yOz} = 180^\circ - 120^\circ = 60^\circ \). Lại có tia \(Ot\) là tia phân giác của \(\widehat {yOz}\) nên \(\widehat {zOt} = \dfrac{1}{2}\widehat {yOz} = \dfrac{1}{2}.60^\circ = 30^\circ \) Lại có \(\widehat {zOt};\,\widehat {tOx}\) là hai góc kề bù nên \(\widehat {zOt} + \widehat {tOx} = 180^\circ \Rightarrow \widehat {tOx} = 180^\circ - \widehat {zOt}\)\( = 180^\circ - 30^\circ = 150^\circ .\) Vậy \(\widehat {tOx} = 150^\circ .\)
Câu hỏi 7 :
Cho \(\widehat {AOB} = {110^0}\) và \(\widehat {AOC} = {55^0}\) sao cho \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau. Chọn câu sai.
Đáp án của giáo viên lời giải hay : C Phương pháp giải :
+ Sử dụng dấu hiệu nhận biết tia nằm giữa hai tia + Tính góc \(BOC\) + Sử dụng định nghĩa tia phân giác Lời giải chi tiết :
![]() Vì \(\widehat {AOB}\) và \(\widehat {AOC}\) không kề nhau nên hai tia \(OC;OB\) thuộc cùng nửa mặt phẳng bờ là đường thẳng chứa tia \(OA\). Lại có \(\widehat {AOC} < \widehat {AOB}\,\left( {55^\circ < 110^\circ } \right)\) nên tia \(OC\) nằm giữa hai tia \(OA\) và \(OB.\) (1) Từ đó \(\widehat {AOC} + \widehat {COB} = \widehat {AOB}\,\) hay \(\widehat {COB} = \widehat {AOB} - \widehat {AOC} = 110^\circ - 55^\circ = 55^\circ \) Suy ra \(\widehat {AOC} = \widehat {BOC} = 55^\circ \) (2) Từ (1) và (2) suy ra tia \(OC\) là tia phân giác góc \(AOB.\) Vậy A, B, D đúng và C sai.
Câu hỏi 8 :
Cho \(\widehat {AOC} = {60^0}\). Vẽ tia \(OB\) sao cho \(OA\) là tia phân giác của \(\widehat {BOC}\). Tính số đo của \(\widehat {AOB}\) và \(\widehat {BOC}\).
Đáp án của giáo viên lời giải hay : D Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
![]() Vì tia \(OA\) là tia phân giác của \(\widehat {BOC}\) nên ta có \(\widehat {AOB} = \widehat {AOC} = \dfrac{{\widehat {BOC}}}{2}\) nên \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 2.\widehat {AOC} = 2.60^\circ = 120^\circ \) Vậy \(\widehat {AOB} = 60^\circ ;\,\widehat {BOC} = 120^\circ \).
Câu hỏi 9 :
Cho \(\widehat {AOB} = 90^\circ \) và tia \(OB\) là tia phân giác của góc \(AOC.\) Khi đó góc \(AOC\) là
Đáp án của giáo viên lời giải hay : D Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
![]() Vì tia \(OB\) là tia phân giác của góc \(AOC\) nên \(\widehat {AOB} = \widehat {BOC} = \dfrac{{\widehat {AOC}}}{2}\) Do đó \(\widehat {AOC} = 2.\widehat {AOB} = 2.90^\circ = 180^\circ \) Nên góc \(AOC\) là góc bẹt.
Câu hỏi 10 :
Cho tia \(On\) là tia phân giác của \(\widehat {mOt}\). Biết \(\widehat {mOn} = {70^0}\), số đo của \(\widehat {mOt}\) là:
Đáp án của giáo viên lời giải hay : A Phương pháp giải :
Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
Vì tia \(On\) là tia phân giác của \(\widehat {mOt}\) nên \(\widehat {mOn} = \widehat {nOt} = \dfrac{{\widehat {mOt}}}{2}\) \( \Rightarrow \widehat {mOt} = 2.\widehat {mOn} = 2.70^\circ = 140^\circ \).
Câu hỏi 11 :
Cho \(\widehat {xOy}\) là góc vuông có tia On là phân giác, số đo của \(\widehat {xOn}\) là:
Đáp án của giáo viên lời giải hay : C Phương pháp giải :
+ Góc vuông là góc có số đo bằng \(90^\circ \) + Sử dụng: Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
Vì \(On\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOn} = \widehat {nOy} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{90^\circ }}{2} = 45^\circ \)
Câu hỏi 12 :
Chọn phát biểu sai trong các phát biểu sau:
Đáp án của giáo viên lời giải hay : C Lời giải chi tiết :
Nếu \(\widehat {xOt} = \widehat {yOt}\) và tia \(Ot\) nằm giữa hai tia \(Ox;Oy\) thì tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) nên C sai, D đúng.
Câu hỏi 13 :
Cho $Ot$ là tia phân giác của \(\widehat {xOy}\). Biết \(\widehat {xOy} = {100^0}\), số đo của \(\widehat {xOt}\) là:
Đáp án của giáo viên lời giải hay : C Phương pháp giải :
Nếu tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2}\) Lời giải chi tiết :
Vì tia \(Ot\) là tia phân giác của \(\widehat {xOy}\) thì \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{100^\circ }}{2} = 50^\circ \)
|