Giải bài tập 5.31 trang 126 SGK Toán 9 tập 1 - Cùng khám pháTrong Hình 5.70, hai cát tuyến AB và CD của đường tròn cắt nhau tại M. a) Chứng minh rằng $\Delta AMD\backsim \Delta CMB$. b) Tính MB và MC, biết \(MD = 100,MA = 70,AD = 40,BC = 42\). Quảng cáo
Đề bài Trong Hình 5.70, hai cát tuyến AB và CD của đường tròn cắt nhau tại M. a) Chứng minh rằng $\Delta AMD\backsim \Delta CMB$. b) Tính MB và MC, biết \(MD = 100,MA = 70,AD = 40,BC = 42\). Phương pháp giải - Xem chi tiết a) + Vì góc MDA và góc MBC là góc nội tiếp cùng chắn cung AC nên \(\widehat {MDA} = \widehat {MBC}\). + Chứng minh $\Delta AMD\backsim \Delta CMB\left( g.g \right)$. b) + Vì $\Delta AMD\backsim \Delta CMB$ nên \(\frac{{MA}}{{MC}} = \frac{{MD}}{{MB}} = \frac{{AD}}{{CB}}\), suy ra \(\frac{{70}}{{MC}} = \frac{{100}}{{MB}} = \frac{{40}}{{42}} = \frac{{20}}{{21}}\), từ đó tính MC, MB. Lời giải chi tiết a) Vì góc MDA và góc MBC là góc nội tiếp cùng chắn cung AC nên \(\widehat {MDA} = \widehat {MBC}\). Tam giác AMD và tam giác CMB có: \(\widehat {MDA} = \widehat {MBC}\), góc M chung. Do đó, $\Delta AMD\backsim \Delta CMB\left( g.g \right)$. b) Vì $\Delta AMD\backsim \Delta CMB$ nên \(\frac{{MA}}{{MC}} = \frac{{MD}}{{MB}} = \frac{{AD}}{{CB}}\), suy ra \(\frac{{70}}{{MC}} = \frac{{100}}{{MB}} = \frac{{40}}{{42}} = \frac{{20}}{{21}}\). Do đó, \(MC = 70:\frac{{20}}{{21}} = \frac{{147}}{2}\), \(MB = 100:\frac{{20}}{{21}} = 105\).
Quảng cáo
|