1. Khái niệm về căn bậc hai của số thực không âm Định nghĩa căn bậc hai Căn bậc hai của một số thực a không âm là số x sao cho . Lưu ý:
Xem chi tiếta) Tìm căn bậc hai số học của 4. b) Xét số đối của căn bậc hai số học của 4. Tính bình phương của số này và so sánh kết quả với 4.
Xem chi tiếtSử dụng máy tính cầm tay, tính các căn bậc hai của: a) \(\frac{{361}}{{144}}\); b) 42,8 (làm tròn kết quả đến hàng phần trăm).
Xem chi tiếta) So sánh \(\sqrt {{5^2}} \) và 5. b) So sánh \(\sqrt {{{( - 6)}^2}} \)và 6.
Xem chi tiếtTính và so sánh a) \(\sqrt {9.16} \) và \(\sqrt 9 .\sqrt {16} \) b)\(\sqrt {4.25} \) và \(\sqrt 4 .\sqrt {25} \)
Xem chi tiếtTính và so sánh a)\(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\); b)\(\sqrt {\frac{{25}}{4}} \)và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\);
Xem chi tiếtGiải thích vì sao: a) \(\sqrt {{3^2}.5} = 3\sqrt 5 \) b) \(\sqrt {{{( - 2)}^2}.7} = 2\sqrt 7 \)
Xem chi tiếtTìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng: a) 169; b) 256; c) 324; d) 400.
Xem chi tiếtSử dụng máy tính cầm tay, tính gần đúng các căn bậc hai của các số sau (làm tròn kết quả đến hàng phần nghìn): a) 3,2; b) 4,15.
Xem chi tiếtTải trọng an toàn m(kg) của một dây cáp thép được tính bởi công thức \(m = 8{d^2}\), Trong đó d(mm) là đường kính của dây cáp thép. a) Biểu diễn \({d^2}\) theo m. b) Tìm đường kính nhỏ nhất của dây cáp thép có tải trong an toàn là 900kg ( làm tròn kết quả đến hàng phần trăm).
Xem chi tiết