Giải mục 5 trang 55 SGK Toán 9 tập 1 - Cùng khám pháTính và so sánh a)\(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\); b)\(\sqrt {\frac{{25}}{4}} \)và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\); Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ4 Trả lời câu hỏi Hoạt động 4 trang 55 SGK Toán 9 Cùng khám phá Tính và so sánh a) \(\sqrt {\frac{9}{{16}}} \) và \(\frac{{\sqrt 9 }}{{\sqrt {16} }}\); b) \(\sqrt {\frac{{25}}{4}} \) và \(\frac{{\sqrt {25} }}{{\sqrt 4 }}\); Phương pháp giải: Thực hiện phép chia để so sánh. Lời giải chi tiết: a) \(\sqrt {\frac{9}{{16}}} = \sqrt {\frac{{{3^2}}}{{{4^2}}}} = \frac{3}{4};\frac{{\sqrt 9 }}{{\sqrt {16} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\). Vậy \(\sqrt {\frac{9}{{16}}} = \frac{{\sqrt 9 }}{{\sqrt {16} }}\). b) \(\sqrt {\frac{25}{{4}}} = \sqrt {\frac{{{3^2}}}{{{4^2}}}} = \frac{3}{4};\frac{{\sqrt 25 }}{{\sqrt {4} }} = \frac{{\sqrt {{3^2}} }}{{\sqrt {{4^2}} }} = \frac{3}{4}\). Vậy \(\sqrt {\frac{25}{{4}}} = \frac{{\sqrt 25 }}{{\sqrt {4} }}\). LT6 Trả lời câu hỏi Luyện tập 6 trang 55 SGK Toán 9 Cùng khám phá a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \);
b) \(\sqrt {\frac{{81}}{{10}}}:\sqrt {4\frac{9}{{10}}} \). Phương pháp giải: Dựa vào công thức “\(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\)” để giải bài toán. Lời giải chi tiết: a) \(\sqrt {\frac{9}{{25}}:\frac{{64}}{{121}}} \)\( = \sqrt {\frac{9}{{25}}} :\sqrt {\frac{{64}}{{121}}} \)\( = \frac{3}{5}:\frac{8}{{11}}\)\( = \frac{3}{5}.\frac{{11}}{8}\)\( = \frac{{33}}{{40}}\). b) \(\sqrt {\frac{{81}}{{10}}} :\sqrt {4\frac{9}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}} :\sqrt {\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}:\frac{{49}}{{10}}} \)\( = \sqrt {\frac{{81}}{{10}}.\frac{{10}}{{49}}} \)\( = \sqrt {\frac{{81}}{{49}}} \)\( = \frac{9}{7}\). VD3 Trả lời câu hỏi Vận dụng 3 trang 55 SGK Toán 9 Cùng khám phá Trả lời câu hỏi nêu trong phần Khởi động bằng cách tính tỉ số của \({v_2}\) và \({v_1}\). “Tốc độ \(v\left( {m/s} \right)\) của một vật thể sau khi rơi được \(h\left( m \right)\) từ một độ cao được tính bởi công thức \(v = \sqrt {19,6h} \). Gọi \({v_1}\) là tốc độ của vật sau khi rơi được 25 mét và \({v_2}\) là tốc độ của vật sau khi rơi được 100 mét. Hỏi \({v_2}\) gấp bao nhiêu lần \({v_1}\)?” Phương pháp giải: + Áp dụng công thức tính \({v_1};{v_2}\). + Tính tỉ số của \({v_2}\) và \({v_1}\). Lời giải chi tiết: Ta có: \({v_1} = \sqrt {19,6.25} ;{v_2} = \sqrt {19,6.100} \). Tỉ số của \({v_2}\) và \({v_1}\) là: \(\frac{{{v_2}}}{{{v_1}}} = \frac{{\sqrt {19,6.100} }}{{\sqrt {19,6.25} }} = \sqrt {\frac{{19,6.100}}{{19,6.25}}} = \sqrt {\frac{{100}}{{25}}} = \sqrt 4 = 2\). Vậy \({v_2}\) gấp 2 lần \({v_1}\).
Quảng cáo
|