Bài 58 trang 39 SBT toán 8 tập 1Giải bài 58 trang 39 sách bài tập toán 8. Thực hiện các phép tính... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Thực hiện các phép tính: LG a \(\displaystyle \left( {{9 \over {{x^3} - 9x}} + {1 \over {x + 3}}} \right)\)\(:\displaystyle \left( {{{x - 3} \over {{x^2} + 3x}} - {x \over {3x + 9}}} \right)\) Phương pháp giải: Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức. Lời giải chi tiết: \(\displaystyle \left( {{9 \over {{x^3} - 9x}} + {1 \over {x + 3}}} \right)\)\(:\displaystyle \left( {{{x - 3} \over {{x^2} + 3x}} - {x \over {3x + 9}}} \right)\) \(\displaystyle = \left[ {{9 \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} + {1 \over {x + 3}}} \right]\)\(:\displaystyle \left[ {{{x - 3} \over {x\left( {x + 3} \right)}} - {x \over {3\left( {x + 3} \right)}}} \right] \)\(\displaystyle = {{9 + x\left( {x - 3} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}:{{3\left( {x - 3} \right) - {x^2}} \over {3x\left( {x + 3} \right)}}\)\(\displaystyle = {{{x^2} - 3x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}.{{3x\left( {x + 3} \right)} \over {3x - 9 - {x^2}}} \)\(\displaystyle = {{3\left( {{x^2} - 3x + 9} \right)} \over {\left( {3 - x} \right)\left( {{x^2} - 3x + 9} \right)}} = {3 \over {3 - x}} \) LG b \(\displaystyle \left( {{2 \over {x - 2}} - {2 \over {x + 2}}} \right).{{{x^2} + 4x + 4} \over 8}\) Phương pháp giải: Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức. Lời giải chi tiết: \(\displaystyle \left( {{2 \over {x - 2}} - {2 \over {x + 2}}} \right).{{{x^2} + 4x + 4} \over 8}\)\(\displaystyle = {{2\left( {x + 2} \right) - 2\left( {x - 2} \right)} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\) \( \displaystyle = {{2x + 4 - 2x + 4} \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\)\(\displaystyle = {8 \over {\left( {x - 2} \right)\left( {x + 2} \right)}}.{{{{\left( {x + 2} \right)}^2}} \over 8}\)\(\displaystyle = {{x + 2} \over {x - 2}}\) LG c \(\displaystyle \left( {{{3x} \over {1 - 3x}} + {{2x} \over {3x + 1}}} \right)\)\(:\displaystyle {{6{x^2} + 10x} \over {1 - 6x + 9{x^2}}}\) Phương pháp giải: Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức. Lời giải chi tiết: \(\displaystyle \left( {{{3x} \over {1 - 3x}} + {{2x} \over {3x + 1}}} \right)\)\(:\displaystyle {{6{x^2} + 10x} \over {1 - 6x + 9{x^2}}}\)\(\displaystyle = {{3x\left( {3x + 1} \right) + 2x\left( {1 - 3x} \right)} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}\)\(:\displaystyle {{2x\left( {3x + 5} \right)} \over {{{\left( {1 - 3x} \right)}^2}}}\) \( \displaystyle = {{9{x^2} + 3x + 2x - 6{x^2}} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.{{{{\left( {1 - 3x} \right)}^2}} \over {2x\left( {3x + 5} \right)}}\) \( = \dfrac{{3{x^2} + 5x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.\dfrac{{{{\left( {1 - 3x} \right)}^2}}}{{2x\left( {3x + 5} \right)}}\) \(\displaystyle = {{x\left( {3x + 5} \right)} \over {\left( {1 - 3x} \right)\left( {1 + 3x} \right)}}.{{{{\left( {1 - 3x} \right)}^2}} \over {2x\left( {3x + 5} \right)}} \)\( \displaystyle = {{1 - 3x} \over {2\left( {1 + 3x} \right)}} \) LG d \(\displaystyle \left( {{x \over {{x^2} - 25}} - {{x - 5} \over {{x^2} + 5x}}} \right):{{2x - 5} \over {{x^2} + 5x}}\)\(\displaystyle + {x \over {5 - x}}\) Phương pháp giải: Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức. Lời giải chi tiết: \(\displaystyle \left( {{x \over {{x^2} - 25}} - {{x - 5} \over {{x^2} + 5x}}} \right)\)\(:\displaystyle {{2x - 5} \over {{x^2} + 5x}} + {x \over {5 - x}}\) \(\displaystyle = \left[ {{x \over {\left( {x + 5} \right)\left( {x - 5} \right)}} - {{x - 5} \over {x\left( {x + 5} \right)}}} \right]\)\(:\displaystyle {{2x - 5} \over {x\left( {x + 5} \right)}} + {x \over {5 - x}} \)\(\displaystyle = {{{x^2} - {{\left( {x - 5} \right)}^2}} \over {x\left( {x + 5} \right)\left( {x - 5} \right)}}.{{x\left( {x + 5} \right)} \over {2x - 5}}\)\(\displaystyle + {x \over {5 - x}} \)\( \displaystyle = {{{x^2} - {x^2} + 10x - 25} \over {\left( {x - 5} \right)\left( {2x - 5} \right)}} + {x \over {5 - x}}\)\(\displaystyle = {{5\left( {2x - 5} \right)} \over {\left( {x - 5} \right)\left( {2x - 5} \right)}} - {x \over {x - 5}} \)\(\displaystyle = {5 \over {x - 5}} - {x \over {x - 5}} = {{5 - x} \over {x - 5}}\)\(\displaystyle = {{ - \left( {x - 5} \right)} \over {x - 5}} = - 1 \) LG e \(\displaystyle \left( {{{{x^2} + xy} \over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y \over {{x^2} + {y^2}}}} \right):\)\(\displaystyle \left( {{1 \over {x - y}} - {{2xy} \over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} \right)\) Phương pháp giải: Vận dụng kiến thức về quy tắc thực hiện các phép tính cộng, trừ, nhân, chia phân thức. Lời giải chi tiết: \(\displaystyle \left( {{{{x^2} + xy} \over {{x^3} + {x^2}y + x{y^2} + {y^3}}} + {y \over {{x^2} + {y^2}}}} \right)\)\(:\displaystyle \left( {{1 \over {x - y}} - {{2xy} \over {{x^3} - {x^2}y + x{y^2} - {y^3}}}} \right)\) \( = \left[ {\dfrac{{{x^2} + xy}}{{{x^2}\left( {x + y} \right) + {y^2}\left( {x + y} \right)}} + \dfrac{y}{{{x^2} + {y^2}}}} \right]\)\(:\left[ {\dfrac{1}{{x - y}} - \dfrac{{2xy}}{{{x^2}\left( {x - y} \right) + {y^2}\left( {x - y} \right)}}} \right]\) \(\displaystyle = \left[ {{{{x^2} + xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}} + {y \over {{x^2} + {y^2}}}} \right]\)\(:\displaystyle \left[ {{1 \over {x - y}} - {{2xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)}}} \right] \)\(\displaystyle = {{{x^2} + xy + y\left( {x + y} \right)} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(:\displaystyle {{{x^2} + {y^2} - 2xy} \over {\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)}} \)\(\displaystyle = {{{x^2} + xy + xy + {y^2}} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(.\displaystyle {{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \over {{{\left( {x - y} \right)}^2}}} \)\(\displaystyle = {{{{\left( {x + y} \right)}^2}} \over {\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)}}\)\(.\displaystyle {{\left( {{x^2} + {y^2}} \right)\left( {x - y} \right)} \over {{{\left( {x - y} \right)}^2}}}\)\(\displaystyle = {{x + y} \over {x - y}}\) Loigiaihay.com
Quảng cáo
|