Bài 53 trang 166 SBT toán 8 tập 1

Giải bài 53 trang 166 sách bài tập toán 8. Qua tâm O của hình vuông ABCD cạnh a, kẻ đường thẳng l cắt cạnh AB và CD lần lượt tại M và N. Biết MN = b. Hãy tính tổng các khoảng cách từ các đỉnh của hình vuông ...

Quảng cáo

Đề bài

Qua tâm \(O\) của hình vuông \(ABCD\) cạnh \(a,\) kẻ đường thẳng \(l\) cắt cạnh \(AB\) và \(CD\) lần lượt tại \(M\) và \(N.\) Biết \(MN = b.\) Hãy tính tổng các khoảng cách từ các đỉnh của hình vuông đến đường thẳng \(l\) theo \(a\) và \(b\) (\(a\) và \(b\) có cùng đơn vị đo)

Phương pháp giải - Xem chi tiết

Chứng minh các tam giác bằng nhau:

\(∆ APM = ∆ CRN\) (cạnh huyền, góc nhọn)

\(∆ BQM = ∆ DSN\) (cạnh huyền, góc nhọn)

Sau đó, tính tổng các khoảng cách từ các đỉnh của hình vuông đến đường thẳng \(l\) theo \(a\) và \(b.\)

Lời giải chi tiết

Gọi \(h_1\) và \(h_2\)  là khoảng cách từ đỉnh \(B\) và đỉnh \(A\) đến đường thẳng \(l\); gọi tổng khoảng cách là \(S.\)

Vì \(O\) là tâm đối xứng của hình vuông.

\(⇒ OM = ON,OA=OC\) (tính chất đối xứng tâm)

Suy ra: \(AM = CN\) (đối xứng qua \(O\))

\(\widehat {AMP} = \widehat {DNS}\) (đồng vị)

\(\widehat {DNS} = \widehat {CNR}\) (đối đỉnh)

\( \Rightarrow \widehat {AMP} = \widehat {CNR}\)

Suy ra: \(∆ APM = ∆ CRN\) (cạnh huyền, góc nhọn)

\(⇒ CR = AP =h_2\) 

\(AM = CN\) (hai cạnh tương ứng)

\(⇒ BM = DN\)

\(\widehat {BMQ} = \widehat {DNS}\) (so le trong)

Suy ra: \(∆ BQM = ∆ DSN\) (cạnh huyền, góc nhọn) \(⇒ DS = BQ =h_1\)

\(\eqalign{  & {S_{BOA}} = {1 \over 4}{S_{ABCD}} = {1 \over 4}{a^2}\,(1) }\) 

\(\eqalign{{S_{BOA}} = {S_{BOM}} + {S_{AOM}} }\)

\(\eqalign{= {1 \over 2}{b \over 2}.{h_1} + {1 \over 2}{b \over 2}.{h_2} }\) 

\(\eqalign{= {b \over 4}\left( {{h_1} + {h_2}} \right)\,(2) }\)

Từ \((1)\) và \((2):\) \({h_1} + {h_2} = \dfrac{{{a^2}}}{b}\)

\(S = 2\left( {{h_1} + {h_2}} \right) = \dfrac{{2{a^2}} }{ b}\)

Loigiaihay.com

  • Bài 54 trang 166 SBT toán 8 tập 1

    Giải bài 54 trang 166 sách bài tập toán 8. Tam giác ABC có hai trung tuyến AM và BN vuông góc với nhau. Hãy tính diện tích tam giác đó theo AM và BN

  • Bài 55 trang 166 SBT toán 8 tập 1

    Giải bài 55 trang 166 sách bài tập toán 8. Cho hình bình hành ABCD. Gọi K và L là hai điểm thuộc cạnh BC sao cho BK = KL = LC. Tính tỉ số diện tích của: a) Các tam giác DAC và DCK...

  • Bài 56 trang 166 SBT toán 8 tập 1

    Giải bài 56 trang 166 SBT toán 8. Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG...

  • Bài 2.1 phần bài tập bổ sung trang 166 SBT toán 8 tập 1

    Giải bài 2.1 phần bài tập bổ sung trang 166 sách bài tập toán 8. Cho hình bình hành ABCD, hai đường chéo AC và BD cắt nhau tại O. Xét các tam giác có đỉnh lấy trong số các điểm A, B, C, D, O,...

  • Bài 2.2 phần bài tập bổ sung trang 166 SBT toán 8 tập 1

    Giải bài 2.2 phần bài tập bổ sung trang 166 sách bài tập toán 8. Cho lục giác ABCDEF, có AB = BC = 3 cm và ED = 4 cm. Biết rằng ED song song với AB, AB vuông góc với BC, FE vuông góc với FA và FE = FA. ...

Quảng cáo
list
close
Gửi bài