Giải bài 4.39 trang 87 SGK Toán 7 tập 1 - Kết nối tri thức

Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho CAM=30. Chứng minh rằng: a) Tam giác CAM cân tại M; b) Tam giác BAM là tam giác đều; c) M là trung điểm của đoạn thẳng BC.

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Quảng cáo

Đề bài

Cho tam giác ABC vuông tại A có B = 60°. Trên cạnh BC lấy điểm M sao cho \(\widehat {CAM} = {30^o}\). Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Phương pháp giải - Xem chi tiết

a)      Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ suy ra góc A bằng góc C.

b)      Chứng minh tam giác ABM cân có 1 góc bằng 60 độ

c)      Dùng tính chất tổng 3 góc trong 1 tam giác bằng 180 độ để tính số đo 3 góc từ đó suy ra tam giác đều

Lời giải chi tiết

a)      Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ =  > {90^o} + {60^o} + \widehat C = {180^o}\\ =  > \widehat C = {30^o}\end{array}\)

Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)

=>Tam giác CAM cân tại M.

b) Xét tam giác ABM có:

\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ =  > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ =  > \widehat {CMA} = {120^o}\\ =  > \widehat {BMA} = {180^o} - \widehat {CMA} = {180^o} - {120^o} = {60^o}\end{array}\)

Xét tam giác ABM có:

\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ =  > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ =  > \widehat {BAM} = {60^o}\end{array}\)

Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.

c) Vì \(\Delta ABM\) đều nên \(AB = BM = AM\)

Mà \(\Delta CAM\) cân tại M nên MA = MC

Do đó, MB = MC. Mà M nằm giữa B và C

=> M là trung điểm của BC.

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close