Giải bài 1 trang 60 SGK Toán 10 tập 1 – Cánh diềuTìm tập xác định của mỗi hàm số sau: Quảng cáo
Đề bài Tìm tập xác định của mỗi hàm số sau: a) \(y = \frac{1}{{{x^2} - x}}\) b) \(y = \sqrt {{x^2} - 4x + 3} \) c) \(y = \frac{1}{{\sqrt {x - 1} }}\) Phương pháp giải - Xem chi tiết \(\frac{1}{{f\left( x \right)}}\) xác định \( \Leftrightarrow f\left( x \right) \ne 0\) \(\frac{1}{{\sqrt {f\left( x \right)} }}\) xác định \( \Leftrightarrow f\left( x \right) > 0\) \(\sqrt {f\left( x \right)} \) xác định \( \Leftrightarrow f\left( x \right) \ge 0\) Lời giải chi tiết a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\) Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\) b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\) Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\) c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\) Tập xác định \(D = \left( {1; + \infty } \right)\)
Quảng cáo
|