Giải bài 9 trang 100 SGK Toán 10 tập 1 – Cánh diều

Hai lực F1 ,F2 cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc \((\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ) = \alpha \) làm cho vật di chuyển theo hướng từ O đến C (Hình 74). Lập công thức tính cường độ của hợp lực \(\overrightarrow F \) làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) làm cho vật di chuyển).

Phương pháp giải - Xem chi tiết

+) OACB là hình bình hành thì \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

+) Tính cường độ của hợp lực \(\overrightarrow F \) bằng định lí cosin: \(O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A\)

Lời giải chi tiết

Ta có: \(\overrightarrow {{F_1}}  = \overrightarrow {OA} ,\;\overrightarrow {{F_2}}  = \overrightarrow {OB}= \overrightarrow {AC}  \)

Khi đó: Hợp lực \(\overrightarrow F \)  là \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \).

Áp dụng định lí cosin cho tam giác OAC, ta có:

\(\begin{array}{*{20}{l}}
{\;\;\;{\mkern 1mu} {\kern 1pt} \;O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A}\\
\begin{array}{l}
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos ({180^o} - \alpha )\\
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} + 2.OA.AC.\cos \alpha
\end{array}\\
{ \Leftrightarrow \left| {\vec F} \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \alpha } }
\end{array}\)

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close