Bài 1.2 trang 24 SBT toán 8 tập 1

Giải bài 1.2 trang 24 sách bài tập toán 8. Trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thỏa mãn đẳng thức ...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Trong mỗi trường hợp sau hãy tìm hai đa thức \(P\) và \(Q\) thỏa mãn đẳng thức:

LG a

\(\displaystyle {{\left( {x + 2} \right)P} \over {x - 2}} = {{\left( {x - 1} \right)Q} \over {{x^2} - 4}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

\(\displaystyle {{\left( {x + 2} \right)P} \over {x - 2}} = {{\left( {x - 1} \right)Q} \over {{x^2} - 4}}\)

\( \Rightarrow \left( {x + 2} \right)P.\left( {{x^2} - 4} \right)\)\(\, = \left( {x - 2} \right)\left( {x - 1} \right)Q\)

\( \Rightarrow \left( {x + 2} \right)P.\left( {{x^2} - 4} \right) \)\(\,= \left( {x - 2} \right)\left( {x - 1} \right)Q\)

\( \Rightarrow P.{\left( {x + 2} \right)^2}\left( {x - 2} \right) \)\(\,= Q\left( {x - 2} \right)\left( {x - 1} \right)\)

\(\displaystyle \Rightarrow P = \frac{{Q\left( {x - 2} \right)\left( {x - 1} \right)}}{{{{\left( {x + 2} \right)}^2}\left( {x - 2} \right)}} \)\(\, \displaystyle = \frac{{Q\left( {x - 1} \right)}}{{{{\left( {x + 2} \right)}^2}}}\)

Chọn \(Q  = {\left( {x + 2} \right)^2} = {x^2} + 4x + 4\) \( \Rightarrow P  = x - 1\)

LG b

\(\displaystyle {{\left( {x + 2} \right)P} \over {{x^2} - 1}} = {{\left( {x - 2} \right)Q} \over {{x^2} - 2x + 1}}\)

Phương pháp giải:

Hai phân thức \( \dfrac{A}{B}\) và \( \dfrac{C}{D}\) gọi là bằng nhau nếu \(AD = BC\).

Lời giải chi tiết:

\(\displaystyle {{\left( {x + 2} \right)P} \over {{x^2} - 1}} = {{\left( {x - 2} \right)Q} \over {{x^2} - 2x + 1}}\)

\( \Rightarrow \left( {x + 2} \right).P.\left( {{x^2} - 2x + 1} \right)\)\(\, = \left( {{x^2} - 1} \right)\left( {x - 2} \right).Q\)

\( \Rightarrow P.\left( {x + 2} \right){\left( {x - 1} \right)^2} \)\(\,= Q.\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\)

\( \displaystyle \Rightarrow P = \frac{{Q.\left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 1} \right)}^2}}}\)\(\, \displaystyle= \frac{{Q\left( {x + 1} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right)\left( {x - 1} \right)}}\)

Chọn \(Q = \left( {x + 2} \right)\left( {x - 1} \right) = {x^2} + x - 2\)

\( \Rightarrow P  = \left( {x - 2} \right)\left( {x + 1} \right) = {x^2} - x - 2\)

Chú ý: Bài toán có nhiều đáp án phụ thuộc vào cách chọn đa thức \(Q\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close