Bài 11.2 phần bài tập bổ sung trang 12 SBT toán 8 tập 1

Giải bài 11.2 phần bài tập bổ sung trang 12 sách bài tập toán 8. Tìm n(n∈N) để mỗi phép chia sau đây là phép chia hết...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm \(n(n \in \mathbb N)\) để mỗi phép chia sau đây là phép chia hết

LG a

\(\) \(\left( {{x^5} - 2{x^3} - x} \right):7{x^n}\)

Phương pháp giải:

+) Đa thức \(A\) chia hết cho đơn thức \(B\) nếu các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\).

+) Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\). 

Lời giải chi tiết:

\(\) \(\left( {{x^5} - 2{x^3} - x} \right)\) chia hết cho \(7{x^n}\) nên mỗi hạng tử của đa thức chia hết cho \(7{x^n}\)

Suy ra \(x\) chia hết cho \(7x^n\) ( trong đó \(x\) là hạng tử có số mũ nhỏ nhất)

Do đó \(n \le 1\)

Vì  \(n \in \mathbb N \Rightarrow n = 0\)  hoặc \(n = 1\)

Vậy \(n = 0\)  hoặc \(n = 1\)  thì \(\left( {{x^5} - 2{x^3} - x} \right) \vdots \;7{x^n}\)

LG b

\(\) \(\left( {5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}} \right):2{x^n}{y^n}\)

Phương pháp giải:

+) Đa thức \(A\) chia hết cho đơn thức \(B\) nếu các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\).

+) Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\). 

Lời giải chi tiết:

\(\) \(5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}\) chia hết cho \(2{x^n}{y^n}\) nên mỗi hạng tử của đa thức đều chia hết cho \(2{x^n}{y^n}\).

Suy ra \(x^2y^2\) chia hết cho \(2x^ny^n\) (trong đó \(x^2y^2\) là hạng tử có số mũ của \(x\) và \(y\) đều nhỏ nhất)

Do đó \(n≤2\)

Vì  \( n \in \mathbb N \Rightarrow n\in \left\{ {0;1;2} \right\}\) 

Vậy với \( n \in \left\{ {0;1;2} \right\}\)  thì \(\left( {5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}} \right) \vdots \;2{x^n}{y^n}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !

Quảng cáo

list
close
Gửi bài Gửi bài