Lý thuyết Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn Toán 9 Cánh diều1. Phương trình bậc nhất hai ẩn Khái niệm phương trình bậc nhất hai ẩn Quảng cáo
1. Phương trình bậc nhất hai ẩn Khái niệm phương trình bậc nhất hai ẩn
Ví dụ: \(2x + 3y = 4\), \(0x + 2y = 3\), \(x + 0y = 2\) là các phương trình bậc nhất hai ẩn. Nghiệm của phương trình bậc nhất hai ẩn
Ví dụ: Cặp số \(( - 1;2)\) là nghiệm của phương trình \(2x + 3y = 4\) vì \(2.\left( { - 1} \right) + 3.2 = - 2 + 6 = 4\). Cặp số \((1;2)\) không là nghiệm của phương trình \(2x + 3y = 4\) vì \(2.1 + 3.2 = 2 + 6 = 8 \ne 4\). Chú ý: Ta cũng áp dụng được quy tắc chuyển vế, quy tắc nhân đã biết ở phương trình bậc nhất một ẩn để biến đổi phương trình bậc nhất hai ẩn. Biểu diễn nghiệm trên mặt phẳng tọa độ Oxy - Trong mặt phẳng tọa độ Oxy, mỗi nghiệm của phương trình \(ax + by = c\) được biểu diễn bởi một điểm. Nghiệm \(\left( {{x_0};{y_0}} \right)\) được biểu diễn bởi điểm có tọa độ \(\left( {{x_0};{y_0}} \right)\). - Mỗi nghiệm của phương trình \(ax + 0y = c\left( {a \ne 0} \right)\) được biểu diễn bởi điểm có tọa độ \(\left( {\frac{c}{a};{y_0}} \right)\) \(\left( {{y_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_1}:x = \frac{c}{a}\). Đường thẳng \({d_1}\) là đường thẳng đi qua điểm \(\frac{c}{a}\) trên trục Ox và vuông góc với trục Ox. - Mỗi nghiệm của phương trình \(0x + by = c\left( {b \ne 0} \right)\) được biểu diễn bởi một điểm có tọa độ \(\left( {{x_0};\frac{c}{b}} \right)\left( {{x_0} \in \mathbb{R}} \right)\) nằm trên đường thẳng \({d_2}:y = \frac{c}{b}\). Đường thẳng \({d_2}\) là đường thẳng đi qua điểm \(\frac{c}{b}\) trên trục Oy và vuông góc với trục Oy. - Mỗi nghiệm của phương trình \(ax + by = c\left( {a \ne 0,b \ne 0} \right)\) được biểu diễn bởi một điểm nằm trên đường thẳng \({d_3}:y = - \frac{a}{b}x + \frac{c}{b}\). Ví dụ: Nghiệm của phương trình \( - 3x + y = 2\) được biểu diễn bởi đường thẳng d: \(y = 3x + 2\). Nghiệm của phương trình \(0x + y = - 2\) được biểu diễn bởi đường thẳng d: \(y = - 2\) vuông góc với Oy tại điểm \(M\left( {0; - 2} \right)\). Nghiệm của phương trình \(2x + 0y = 3\) được biểu diễn bởi đường thẳng d: \(x = 1,5\) vuông góc với Ox tại điểm \(N\left( {1,5;0} \right)\). 2. Hệ hai phương trình bậc nhất hai ẩn Khái niệm hệ hai phương trình bậc nhất hai ẩn
Ví dụ: Hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}3x = 1\\x - y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}4x - y = 3\\3y = 6\end{array} \right.\) là các hệ phương trình bậc nhất hai ẩn. Nghiệm của hệ hai phương trình bậc nhất hai ẩn
Ví dụ: Cặp số (1; 2) là một nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), vì: \(2x - y = 2.1 - 2 = 0\) nên (1; 2) là nghiệm của phương trình thứ nhất. \(x + y = 1 + 2 = 3\) nên (1; 2) là nghiệm của phương trình thứ hai.
Quảng cáo
|