Giải mục 2 trang 16, 17 SGK Toán 9 tập 1 - Cánh diềuHai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là (x) đồng (left( {x > 0} right)), giá của mỗi chiếc bút bi là (y) đồng (left( {y > 0} right)). a. Viết hai phương trình bậc nhất hai ẩn (x,y) lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
HĐ3 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 3 trang 16 SGK Toán 9 Cánh diều Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là \(x\) đồng \(\left( {x > 0} \right)\), giá của mỗi chiếc bút bi là \(y\) đồng \(\left( {y > 0} \right)\). a. Viết hai phương trình bậc nhất hai ẩn \(x,y\) lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn Huy. b. Cặp số \(\left( {x;y} \right) = \left( {6\,\,000;3\,\,000} \right)\) có phải là nghiệm của từng phương trình bậc nhất đó hay không? Vì sao? Phương pháp giải: + Tìm mối liên hệ giữa vật phẩm mua và \(x;y\); + Thay cặp số \(\left( {x;y} \right) = \left( {6\,\,000;\,3\,\,000} \right)\) vào từng phương trình để đối chiếu nghiệm. Lời giải chi tiết: a. + Bạn Dũng phải trả số tiền cho 5 quyển vở là: \(5x\) (đồng); + Bạn Dũng phải trả số tiền cho 3 chiếc bút bi là: \(3y\) (đồng); Suy ra Số tiền bạn Dũng phải trả là: \(5x + 3y = 39000\). + Bạn Huy phải trả số tiền cho 6 quyển vở là: \(6x\) (đồng); + Bạn Huy phải trả số tiền cho 2 chiếc bút bi là: \(2y\) (đồng); Suy ra Số tiền bạn Huy phải trả là: \(6x + 2y = 42000\). b. + Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(5x + y = 39000\) ta được: \(\begin{array}{l}5.6000 + 3.3000 = 39000\\30000 + 9000 = 39000\end{array}\) \(39000 = 39000\) (luôn đúng). Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(5x + y = 39000\). + Thay cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) vào phương trình \(6x + 2y = 42000\) ta được: \(\begin{array}{l}6.6000 + 2.3000 = 42000\\36000 + 6000 = 42000\end{array}\) \(42000 = 42000\) (luôn đúng). Vậy cặp số \(\left( {x;y} \right) = \left( {6000;3000} \right)\) là nghiệm của phương trình \(6x + 2y = 42000\). LT3 Video hướng dẫn giải Trả lời câu hỏi Luyện tập 3 trang 16 SGK Toán 9 Cánh diều Cho ví dụ về hệ phương trình hai ẩn. Phương pháp giải: Dựa vào khái niệm hệ phương trình bậc nhất hai ẩn để lấy ví dụ. Lời giải chi tiết: \(\left\{ \begin{array}{l}2x + y = 1\\ - x + 4y = 5\end{array} \right.\) LT4 Video hướng dẫn giải Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 9 Cánh diều Cho hệ phương trình: \(\left\{ \begin{array}{l}2x - 5y = - 2\\x + y = 6\end{array} \right.\). Kiểm tra xem cặp số nào sau đây là nghiệm của phương trình đã cho: a. \(\left( {3;3} \right)\); b. \(\left( {4;2} \right)\). Phương pháp giải: Thay nghiệm vào hệ phương trình để kiểm tra. Lời giải chi tiết: a. Thay giá trị \(x = 3;y = 3\) vào mỗi phương trình trong hệ ta có: \(\begin{array}{l}2.3 - 5.3 = - 9 \ne - 2;\\3 + 3 = 6\,.\end{array}\) Do đó, cặp số \(\left( {3;3} \right)\) không là nghiệm của phương trình thứ nhất trong hệ phương trình đã cho. Vậy cặp số \(\left( {3;3} \right)\) không là nghiệm của hệ phương trình đã cho. b. Thay giá trị \(x = 4;y = 2\) vào mỗi phương trình trong hệ ta có: \(\begin{array}{l}2.4 - 5.2 = - 2;\\4 + 2 = 6\,\,.\end{array}\) Suy ra cặp số \(\left( {4;2} \right)\) là nghiệm của từng phương trình trong hệ. Do đó cặp số \(\left( {4;2} \right)\) là nghiệm của hệ phương trình đã cho.
Quảng cáo
|