1. Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. Cạnh góc vuông = (cạnh huyền ) × (sin góc đối) = (cạnh huyền ) × (cosin góc kề)
Xem chi tiếtHình 12b mô tả đường lên dốc ở Hình 12a, trong đó góc giữa (BC) và phương nằm ngang (BA) là (widehat {ABC} = 25^circ ). Cạnh góc vuông (AC) và cạnh huyền (BC) (Hình 12b) có liên hệ với nhau như thế nào?
Xem chi tiếtCho tam giác (ABC) vuông tại (A) (Hình 13). a) Biểu diễn (sin B,cos C) theo (AC,BC). b) Viết công thức tính (AC) theo (BC) và (sin B). c) Viết công thức tính (AC) theo (BC) và (cos C).
Xem chi tiếtCho tam giác (ABC) vuông tại (A) (Hình 17) a) Biểu diễn (tan B,cot C) theo (AB,AC). b) Viết công thức tính (AC) theo (AB) và (tan B). c) Viết công thức tính (AC) theo (AB) và (cot C).
Xem chi tiếtTìm độ dài cạnh góc vuông (AC) và số đo các góc nhọn (B,C) của tam giác vuông (ABC), biết cạnh góc vuông (AB = 5cm) và cạnh huyền (BC = 13cm).
Xem chi tiếtTìm (x,y) trong mỗi hình (23a,23b,23c) (làm tròn kết quả đến hàng phần mười của centimét)
Xem chi tiếtCho tam giác (ABC) có đường cao (AH = 6cm,widehat B = 40^circ ,widehat C = 35^circ ). Tính độ dài các đoạn thẳng (AB,BH,AC,BC) (làm tròn kết quả đến hàng phần mười của centimét).
Xem chi tiếtCho tam giác (ABC) vuông tại (A) có (widehat B = 30^circ ). Chứng minh (AC = frac{1}{2}BC).
Xem chi tiếtCho tam giác (ABC) vuông cân tại (A). Chứng minh (AB = AC = frac{{sqrt 2 }}{2}BC).
Xem chi tiếtTrong Hình 24, cho (widehat O = alpha ,AB = m) và (widehat {OAB} = widehat {OCA} = widehat {ODC} = 90^circ ). Chứng minh: a) (OA = m.cot alpha ); b) (AC = m.cos alpha ); c) (CD = m.{cos ^2}alpha ).
Xem chi tiết