Giải bài tập 1.21 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

Giải các phương trình sau: a) \(\frac{{2x - 1}}{{x - 5}} + 1 = \frac{1}{{x - 5}}\). b) \(2x - \frac{{2{x^2}}}{{x + 9}} = \frac{{4x}}{{x + 9}} + \frac{5}{9}\). c) \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 4}}{{x - 1}} = 2\). d) \(\frac{{3x - 2}}{{x + 5}} = \frac{{6x + 1}}{{2x - 3}}\).

Quảng cáo

Đề bài

Giải các phương trình sau:

a) \(\frac{{2x - 1}}{{x - 5}} + 1 = \frac{1}{{x - 5}}\).

b) \(2x - \frac{{2{x^2}}}{{x + 9}} = \frac{{4x}}{{x + 9}} + \frac{5}{9}\).

c) \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 4}}{{x - 1}} = 2\).

d) \(\frac{{3x - 2}}{{x + 5}} = \frac{{6x + 1}}{{2x - 3}}\).

Phương pháp giải - Xem chi tiết

+ Tìm điều kiện xác định của phương trình;

+ Quy đồng mẫu hai vế của phương trình rồi bỏ mẫu;

+ Giải phương trình vừa nhận được;

+ Kiểm tra điều kiện xác định và kết luận nghiệm của phương trình ban đầu.

Lời giải chi tiết

a) \(\frac{{2x - 1}}{{x - 5}} + 1 = \frac{1}{{x - 5}}\).        (1)

Điều kiện xác định của phương trình \(x \ne 5\).

Quy đồng mẫu hai vế của phương trình ta được:

\(\frac{{2x - 1}}{{x - 5}} + \frac{{x - 5}}{{x - 5}} = \frac{1}{{x - 5}}\).

Sau khi bỏ mẫu, ta được phương trình:

\(2x - 1 + x - 5 = 1\).      (1a)

Giải phương trình (1a):

\(\begin{array}{l}3x - 6 = 1\\3x = 7\\x = \frac{7}{3}.\end{array}\)

Ta thấy \(x = \frac{7}{3}\) thỏa mãn điều kiện xác định nên nó là nghiệm của phương trình (1).

Vậy phương trình (1) có nghiệm duy nhất \(x = \frac{7}{3}\).

b) \(2x - \frac{{2{x^2}}}{{x + 9}} = \frac{{4x}}{{x + 9}} + \frac{5}{9}\).          (2)

Điều kiện xác định của phương trình là \(x \ne  - 9\).

Quy đồng mẫu hai vế và bỏ mẫu, ta được:

\(\begin{array}{l}\frac{{18x\left( {x + 9} \right)}}{{9\left( {x + 9} \right)}} - \frac{{18{x^2}}}{{9\left( {x + 9} \right)}} = \frac{{36x}}{{9\left( {x + 9} \right)}} + \frac{{5\left( {x + 9} \right)}}{{9\left( {x + 9} \right)}}\\18{x^2} + 162x - 18{x^2} = 36x + 5x + 45\\162x - 36x - 5x = 45\\121x = 45\\x = \frac{{45}}{{121}}.\end{array}\)

Ta thấy \(x = \frac{{45}}{{121}}\) thỏa mãn điều kiện xác định nên nó là nghiệm của phương trình (2).

Vậy phương trình (2) có nghiệm duy nhất \(x = \frac{{45}}{{121}}\).

c) \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 4}}{{x - 1}} = 2\).                 (3)

Điều kiện xác định của phương trình là \(x \ne  - 1\) và \(x \ne 1\).

Quy đồng mẫu hai vế và bỏ mẫu, ta được:

\(\begin{array}{l}\frac{{\left( {x + 3} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} + \frac{{\left( {x - 4} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{2\left( {x + 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\{x^2} + 2x - 3 + {x^2} - 3x - 4 = 2{x^2} - 2\\ - x = 5\\x =  - 5.\end{array}\)

Ta thấy \(x =  - 5\) thỏa mãn điều kiện xác định nên nó là nghiệm của phương trình (3).

Vậy phương trình (3) có nghiệm duy nhất \(x =  - 5\).

d) \(\frac{{3x - 2}}{{x + 5}} = \frac{{6x + 1}}{{2x - 3}}\).                   (4)

Điều kiện xác định của phương trình \(x \ne  - 5\) và \(x \ne \frac{3}{2}\).

Quy đồng mẫu hai vế và bỏ mẫu, ta được:

\(\begin{array}{l}\frac{{\left( {3x - 2} \right)\left( {2x - 3} \right)}}{{\left( {x + 5} \right)\left( {2x - 3} \right)}} = \frac{{\left( {6x + 1} \right)\left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {2x - 3} \right)}}\\6{x^2} - 9x - 4x + 6 = 6{x^2} + 30x + x + 5\\ - 13x - 31x =  - 1\\ - 44x =  - 1\\x = \frac{1}{{44}}.\end{array}\)

Ta thấy \(x = \frac{1}{{44}}\) thỏa mãn điều kiện xác định nên nó là nghiệm của phương trình (4).

Vậy phương trình (4) có nghiệm duy nhất \(x = \frac{1}{{44}}\).

  • Giải bài tập 1.22 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Độ cao \(h\) (m) của một viên đá so với mực nước biển khi được ném từ đỉnh của một vách đá được tính bởi công thức \(h = - 5{t^2} + 15t + 20\), trong đó \(t\left( s \right)\) là thời gian kể từ lúc viên đá bắt đầu được ném. Khi nào viên đá đạt độ cao 20m so với mực nước biển?

  • Giải bài tập 1.23 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Một công ty sử dụng biểu thức \(\frac{{60\left( {2n + 1} \right)}}{{n + 1}}\) (đơn vị: triệu đồng) để xác định tổng tiền lương của nhân viên A trong năm thứ n tại công ty. Trong năm thứ mấy thì tổng tiền lương của nhân viên A là 110 triệu đồng?

  • Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế: a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y = - 10\end{array} \right.\); b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\); c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y = - 6\\1,2x - 1,8y = 21\end{array} \right.\); d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y = - 7\end{array} \right.\).

  • Giải bài tập 1.25 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Một hợp kim chứa 25% kim loại đồng. Một hợp kim khác chứa 50% kim loại đồng. Cần dùng bao nhiêu gam hợp kim mỗi loại nêu trên để tạo ra 1kg hợp kim chứa 45% kim loại đồng?

  • Giải bài tập 1.26 trang 25 SGK Toán 9 tập 1 - Cùng khám phá

    Xác định các hệ số (x) và (y) trong phương trình phản ứng hóa học (đã cân bằng) sau: (3C{l_2} + 6NaOH to xNaCl + yNaCl{O_3} + 3{H_2}O).

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close