Giải bài tập 1.20 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

Giải các phương trình sau bằng cách đưa về dạng tích: a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\). b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\). c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\). d) \(9{x^2} - 6x + 1 = {x^2}\).

Quảng cáo

Đề bài

Giải các phương trình sau bằng cách đưa về dạng tích:

a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\).

b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\).

c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\).

d) \(9{x^2} - 6x + 1 = {x^2}\).

Phương pháp giải - Xem chi tiết

+ Chuyển về phương trình tích;

+ Giải phương trình theo phương pháp giải phương trình tích;

+ Kết luận nghiệm.

Lời giải chi tiết

a) \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\)

\(\begin{array}{l}x\left( {2x - 10} \right) - 4x\left( {x - 6} \right) = 0\\x\left[ {2x - 10 - 4\left( {x - 6} \right)} \right] = 0\\x\left( {2x - 10 - 4x + 24} \right) = 0\\x\left( { - 2x + 14} \right) = 0.\end{array}\)

Phương trình \(x = 0\) có nghiệm duy nhất \(x = 0\).

Phương trình \( - 2x + 14 = 0\) có nghiệm duy nhất \(x = 7\).

Vậy phương trình \(x\left( {2x - 10} \right) = 4x\left( {x - 6} \right)\) có hai nghiệm \(x = 0\) và \(x = 7\).

b) \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\)

\(\begin{array}{l}4\left( {x + 3} \right) - \left( {x + 3} \right)\left( {7 - 5x} \right) = 0\\\left( {x + 3} \right)\left[ {4 - \left( {7 - 5x} \right)} \right] = 0\\\left( {x + 3} \right)\left( {4 - 7 + 5x} \right) = 0\\\left( {x + 3} \right)\left( {5x - 3} \right) = 0.\end{array}\)

Phương trình \(x + 3 = 0\) có nghiệm duy nhất \(x =  - 3\).

Phương trình \(5x - 3 = 0\) có nghiệm duy nhất \(x = \frac{3}{5}\).

Vậy phương trình \(4x + 12 = \left( {x + 3} \right)\left( {7 - 5x} \right)\) có hai nghiệm \(x =  - 3\) và \(x = \frac{3}{5}\).

c) \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\)

\(\begin{array}{l}{\left( {x + 2} \right)^2} - {5^2} = 0\\\left( {x + 2 - 5} \right)\left( {x + 2 + 5} \right) = 0\\\left( {x - 3} \right)\left( {x + 7} \right) = 0.\end{array}\)

Phương trình \(x - 3 = 0\) có nghiệm duy nhất \(x = 3\).

Phương trình \(x + 7 = 0\) có nghiệm duy nhất \(x =  - 7\).

Vậy phương trình \(\left( {{x^2} + 4x + 4} \right) - 25 = 0\) có hai nghiệm \(x = 3\) và \(x =  - 7\).

d) \(9{x^2} - 6x + 1 = {x^2}\)

\(\begin{array}{l}{\left( {3x - 1} \right)^2} - {x^2} = 0\\\left( {3x - 1 - x} \right)\left( {3x - 1 + x} \right) = 0\\\left( {2x - 1} \right)\left( {4x - 1} \right) = 0.\end{array}\)

Phương trình \(2x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{2}\).

Phương trình \(4x - 1 = 0\) có nghiệm duy nhất \(x = \frac{1}{4}\).

Vậy phương trình \(9{x^2} - 6x + 1 = {x^2}\) có hai nghiệm \(x = \frac{1}{2}\) và \(x = \frac{1}{4}\).

  • Giải bài tập 1.21 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Giải các phương trình sau: a) \(\frac{{2x - 1}}{{x - 5}} + 1 = \frac{1}{{x - 5}}\). b) \(2x - \frac{{2{x^2}}}{{x + 9}} = \frac{{4x}}{{x + 9}} + \frac{5}{9}\). c) \(\frac{{x + 3}}{{x + 1}} + \frac{{x - 4}}{{x - 1}} = 2\). d) \(\frac{{3x - 2}}{{x + 5}} = \frac{{6x + 1}}{{2x - 3}}\).

  • Giải bài tập 1.22 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Độ cao \(h\) (m) của một viên đá so với mực nước biển khi được ném từ đỉnh của một vách đá được tính bởi công thức \(h = - 5{t^2} + 15t + 20\), trong đó \(t\left( s \right)\) là thời gian kể từ lúc viên đá bắt đầu được ném. Khi nào viên đá đạt độ cao 20m so với mực nước biển?

  • Giải bài tập 1.23 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Một công ty sử dụng biểu thức \(\frac{{60\left( {2n + 1} \right)}}{{n + 1}}\) (đơn vị: triệu đồng) để xác định tổng tiền lương của nhân viên A trong năm thứ n tại công ty. Trong năm thứ mấy thì tổng tiền lương của nhân viên A là 110 triệu đồng?

  • Giải bài tập 1.24 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Giải các hệ phương trình sau bằng phương pháp cộng hoặc phương pháp thế: a) \(\left\{ \begin{array}{l}3x + 4y = 8\\2x - 5y = - 10\end{array} \right.\); b) \(\left\{ \begin{array}{l}9x - 11y = 6\\3x + y = 4\end{array} \right.\); c) \(\left\{ \begin{array}{l} - 0,4x + 0,5y = - 6\\1,2x - 1,8y = 21\end{array} \right.\); d) \(\left\{ \begin{array}{l}2x - 6y = 14\\ - x + 3y = - 7\end{array} \right.\).

  • Giải bài tập 1.25 trang 24 SGK Toán 9 tập 1 - Cùng khám phá

    Một hợp kim chứa 25% kim loại đồng. Một hợp kim khác chứa 50% kim loại đồng. Cần dùng bao nhiêu gam hợp kim mỗi loại nêu trên để tạo ra 1kg hợp kim chứa 45% kim loại đồng?

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close