tuyensinh247

Bài 9 trang 183 SBT toán 8 tập 2

Giải bài 9 trang 183 sách bài tập toán 8. Giải phương trình ...

Quảng cáo

Đề bài

Giải phương trình:

\(\dfrac{6}{{x - 1}} - \dfrac{4}{{x - 3}} + \dfrac{8}{{\left( {x - 1} \right)\left( {x - 3} \right)}}\)\(\, = 0\)

Phương pháp giải - Xem chi tiết

Các bước giải phương trình chứa ẩn ở mẫu:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3: Giải phương trình vừa nhận được.

Bước 4: Kết luận.

Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

Lời giải chi tiết

ĐKXĐ: \(x\ne1;\;x\ne3\).

\(\dfrac{6}{{x - 1}} - \dfrac{4}{{x - 3}} + \dfrac{8}{{\left( {x - 1} \right)\left( {x - 3} \right)}} \)\(\,= 0\)

\(\Leftrightarrow \dfrac{{6\left( {x - 3} \right) - 4\left( {x - 1} \right) + 8}}{{\left( {x - 1} \right)\left( {x - 3} \right)}} = 0\)

\(\Rightarrow 6\left( {x - 3} \right) - 4\left( {x - 1} \right) + 8 = 0\)

\(\Leftrightarrow 6x - 18 - 4x + 4 + 8 = 0\)

\(\Leftrightarrow 2x - 6 = 0\)

\(\Leftrightarrow 2x = 6\)

\(\Leftrightarrow x = 6:2\)

\(\Leftrightarrow x = 3\) (không thỏa mãn điều kiện xác định) 

Vậy phương trình đã cho vô nghiệm.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close