Giải bài 3 trang 52 SGK Toán 10 tập 2 – Cánh diều

Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:

a) “Bạn Thảo ngồi ghế đầu tiên”;

b) “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.

Phương pháp giải - Xem chi tiết

Bước 1: Tính số phần tử của không gian mẫu “\(n\left( \Omega  \right)\)”  và số phần tử của kết quả có lợi cho biến cố “\(n\left( A \right)\)” 

Bước 2: Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

Lời giải chi tiết

+) Xếp 4 bạn vào 4 ghế là sự hoán vị của 4 phần tử. Do đó, không gian mẫu là: \(n\left( \Omega  \right) = 4!\) ( phần tử)

a) +) Gọi A là biến cố “Bạn Thảo ngồi ghế đầu tiên”

         Ghế đầu tiên là ghế của Thảo nên có 1 cách chọn, 3 ghế còn lại xếp tùy ý 3 bạn nên ta có sự hoán vị của 3 phần tử. Theo quy tắc nhân, ta có: \(n\left( A \right) = 1.3!\) ( phần tử)

+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4}\)

b) +) Gọi B là biến cố “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.

         Ghế đầu tiên của bạn Thảo và ghế cuối cùng của bạn Huy nên có 1 cách chọn cho cả 2 ghế, 2 ghế còn lại xếp tùy ý 2 bạn nên ta có sự hoán vị của 2 phần tử. Theo quy tắc nhân, ta có: \(n\left( B \right) = 1.1.2!\) ( phần tử)

+) Vậy xác suất của biến cố B là: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{12}}\)

  • Giải bài 4 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Có 10 bông hoa màu trắng, 10 bông hoa màu vàng và 10 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.

  • Giải bài 2 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Một hộp có 4 tấm bìa cùng loại, mỗi tấm bìa được ghi một trong các số 1, 2, 3, 4 hai tấm bìa khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 3 tấm bìa từ trong hộp.

  • Giải bài 1 trang 52 SGK Toán 10 tập 2 – Cánh diều

    Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5, hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên đồng thời 2 chiếc thẻ từ trong hộp.

  • Giải mục II trang 51 SGK Toán 10 tập 2 - Cánh diều

    Có 15 bông hoa màu trắng và 15 bông hoa màu vàng. Người ta chọn ra đồng thời 10 bông hoa. Tính xác suất của biến cố “Trong 10 bông hoa được chọn ra có ít nhất một bông màu trắng”.

  • Giải mục I trang 46, 47, 48, 49, 50 SGK Toán 10 tập 2 - Cánh diều

    Xét phép thử “Gieo một xúc xắc một lần”, kết quả có thể xảy ra của phép thử là số chấm trên mặt xuất hiện của xúc xắc. Viết tập hợp 2 các kết quả có thể xảy ra của phép thử trên. Có 5 bông hoa màu trắng, 5 bông hoa màu vàng và 6 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close