Bài 24 trang 30 SBT toán 8 tập 1

Giải bài 24 trang 30 sách bài tập toán 8. Làm tính nhân phân thức : ...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Làm tính trừ phân thức :

LG câu a

\(\displaystyle{{3x - 2} \over {2xy}} - {{7x - 4} \over {2xy}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{3x - 2} \over {2xy}} - {{7x - 4} \over {2xy}}\)\(\displaystyle = {{3x - 2} \over {2xy}} + {{4 - 7x} \over {2xy}} \)

\(\displaystyle= {{3x - 2 + 4 - 7x} \over {2xy}} = {{2\left( {1 - 2x} \right)} \over {2xy}} \) \(\displaystyle= {{1 - 2x} \over {xy}}\)

LG câu b

\(\displaystyle{{3x + 5} \over {4{x^3}y}} - {{5 - 15x} \over {4{x^3}y}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{3x + 5} \over {4{x^3}y}} - {{5 - 15x} \over {4{x^3}y}}\)\(\displaystyle = {{3x + 5} \over {4{x^3}y}} + {{15x - 5} \over {4{x^3}y}} \) 

\(\displaystyle= {{3x + 5 + 15x - 5} \over {4{x^3}y}} = {{18x} \over {4{x^3}y}} = {9 \over {2{x^2}y}}\)

LG câu c

\(\displaystyle{{4x + 7} \over {2x + 2}} - {{3x + 6} \over {2x + 2}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{4x + 7} \over {2x + 2}} - {{3x + 6} \over {2x + 2}}\)\(\displaystyle = {{4x + 7} \over {2x + 2}} + {{ - \left( {3x + 6} \right)} \over {2x + 2}} \) 

\(\displaystyle= {{4x + 7 - 3x - 6} \over {2x + 2}} = {{x + 1} \over {2\left( {x + 1} \right)}} = {1 \over 2}\)

LG câu d

\(\displaystyle{{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} - {{5x - 7} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} - {{5x - 7} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)\(\displaystyle = {{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} \) \(\displaystyle+ {{7 - 5x} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)

\(\displaystyle = {{9x + 5 + 7 - 5x} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} \) \(\displaystyle= {{4x + 12 } \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} \)\(\displaystyle= {{4\left( {x + 3} \right)} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} \) \(\displaystyle= {2 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)

LG câu e

\(\displaystyle{{xy} \over {{x^2} - {y^2}}} - {{{x^2}} \over {{y^2} - {x^2}}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{xy} \over {{x^2} - {y^2}}} - {{{x^2}} \over {{y^2} - {x^2}}}\)\(\displaystyle = {{xy} \over {{x^2} - {y^2}}} + {{{x^2}} \over {{x^2} - {y^2}}} \)

 \(\displaystyle= {{xy + {x^2}} \over {{x^2} - {y^2}}} = {{x\left( {x + y} \right)} \over {\left( {x + y} \right)\left( {x - y} \right)}} \) \(\displaystyle= {x \over {x - y}}\)

LG câu f

\(\displaystyle{{5x + {y^2}} \over {{x^2}y}} - {{5y - {x^2}} \over {x{y^2}}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{5x + {y^2}} \over {{x^2}y}} - {{5y - {x^2}} \over {x{y^2}}}\)\(\displaystyle = {{5x + {y^2}} \over {{x^2}y}} + {{{x^2} - 5y} \over {x{y^2}}} \) 

\(\displaystyle= {{y\left( {5x + {y^2}} \right)} \over {{x^2}{y^2}}} + {{x\left( {{x^2} - 5y} \right)} \over {{x^2}{y^2}}}\) \(\displaystyle = {{5xy + {y^3} + {x^3} - 5xy} \over {{x^2}{y^2}}} \) \(\displaystyle= {{{x^3} + {y^3}} \over {{x^2}{y^2}}}\)

LG câu g

\(\displaystyle{x \over {5x + 5}} - {x \over {10x - 10}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{x \over {5x + 5}} - {x \over {10x - 10}}\)\(\displaystyle = {x \over {5\left( {x + 1} \right)}} + {{ - x} \over {10\left( {x - 1} \right)}} \) 

\(\displaystyle= {{2x\left( {x - 1} \right)} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}} \) \(\displaystyle+ {{ - x\left( {x + 1} \right)} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}}\)

\(\displaystyle = {{2{x^2} - 2x - {x^2} - x} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}} \) \(\displaystyle = {{{x^2} - 3x} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}}\)

LG câu h

\(\displaystyle{{x + 9} \over {{x^2} - 9}} - {3 \over {{x^2} + 3x}}\)

Phương pháp giải:

- Áp dụng quy tắc trừ hai phân thức :

\(\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{A}{B} + \left( {\dfrac{{ - C}}{D}} \right).\)

- Muốn rút gọn một phân thức đại số ta làm như sau :

+ Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung.

+ Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\displaystyle{{x + 9} \over {{x^2} - 9}} - {3 \over {{x^2} + 3x}}\)\(\displaystyle = {{x + 9} \over {\left( {x + 3} \right)\left( {x - 3} \right)}} + {{ - 3} \over {x\left( {x + 3} \right)}} \) 

\(\displaystyle= {{x\left( {x + 9} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} \) \(\displaystyle + {{ - 3\left( {x - 3} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}\)

\(\displaystyle = {{{x^2} + 9x - 3x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} \) \(\displaystyle= {{{x^2} + 6x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} \)

\(\displaystyle= {{{{\left( {x + 3} \right)}^2}} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} = {{x + 3} \over {x\left( {x - 3} \right)}}\)

Loigiaihay.com

Quảng cáo

Gửi bài