Bài 20 trang 29 SBT toán 8 tập 1Giải bài 20 trang 29 sách bài tập toán 8. Cộng các phân thức: 1/(x-y).(y-x) + 1/ (y-z)(z-x)... Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cộng các phân thức: LG a \(\dfrac{1}{{\left( {x - y} \right)\left( {y - z} \right)}}\) + \(\dfrac{1 }{ {\left( {y - z} \right)\left( {z - x} \right)}}\) + \(\dfrac{1}{ {\left( {z - x} \right)\left( {x - y} \right)}}\) Phương pháp giải: Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. \( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) Lời giải chi tiết: \(\displaystyle{1 \over {\left( {x - y} \right)\left( {y - z} \right)}} + {1 \over {\left( {y - z} \right)\left( {z - x} \right)}}\) + \(\displaystyle {1 \over {\left( {z - x} \right)\left( {x - y} \right)}}\) \(\displaystyle = {{z - x} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}} \)\(\displaystyle + {{x - y} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}}\)\(\displaystyle + {{y - z} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}}\)\(\displaystyle = {{z - x + x - y + y - z} \over {\left( {x - y} \right)\left( {y - z} \right)\left( {z - x} \right)}} = 0 \) LG b \(\dfrac{4}{{\left( {y - x} \right)\left( {z - x} \right)}} + \dfrac{3}{{\left( {y - x} \right)\left( {y - z} \right)}}\) + \(\dfrac{3 }{{\left( {y - z} \right)\left( {x - z} \right)}}\) Phương pháp giải: Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. \( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) Lời giải chi tiết: \(\displaystyle{4 \over {\left( {y - x} \right)\left( {z - x} \right)}}\)\(\displaystyle + {3 \over {\left( {y - x} \right)\left( {y - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - z} \right)\left( {x - z} \right)}}\) \(\displaystyle = {{ - 4} \over {\left( {y - x} \right)\left( {x - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - x} \right)\left( {y - z} \right)}}\)\(\displaystyle + {3 \over {\left( {y - z} \right)\left( {x - z} \right)}}\) \(\displaystyle = {{ - 4\left( {y - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {{3\left( {x - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {{3\left( {y - x} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\) \(\displaystyle= {{ - 4y + 4z + 3x - 3z + 3y - 3x} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle = {{z - y} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\) \(\displaystyle= {{ - \left( {y - z} \right)} \over {\left( {x - z} \right)\left( {y - z} \right)\left( {y - x} \right)}}\) \(\displaystyle = {{ - 1} \over {\left( {x - z} \right)\left( {y - x} \right)}} = {1 \over {\left( {x - z} \right)\left( {x - y} \right)}}\) LG c \(\dfrac{1}{ {x\left( {x - y} \right)\left( {x - z} \right)}} + \dfrac{1}{{y\left( {y - z} \right)\left( {y - x} \right)}}\) + \(\dfrac{1}{{z\left( {z - x} \right)\left( {z - y} \right)}}\) Phương pháp giải: Quy tắc: Muốn cộng hai phân thức có mẫu thức khác nhau ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được. \( \dfrac{A}{B}+\dfrac{C}{D}=\dfrac{AD}{BD}+\dfrac{CB}{DB}\)\(\,=\dfrac{AD+BC}{BD}\) Lời giải chi tiết: \(\displaystyle{1 \over {x\left( {x - y} \right)\left( {x - z} \right)}}\)\(\displaystyle + {1 \over {y\left( {y - z} \right)\left( {y - x} \right)}}\)\(\displaystyle + {1 \over {z\left( {z - x} \right)\left( {z - y} \right)}}\) \(\displaystyle = {1 \over {x\left( {x - y} \right)\left( {x - z} \right)}}\)\(\displaystyle +{-1 \over {y\left( {x - y} \right)\left( {y - z} \right)}}\)\(\displaystyle + {1 \over {z\left( {x - z} \right)\left( {y - z} \right)}}\) \(\displaystyle = {{yz\left( {y - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle + {{ - xz\left( {x - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle + {{xy\left( {x - y} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\) \(\displaystyle = {{{y^2}z - y{z^2} - {x^2}z + x{z^2} + {x^2}y - x{y^2}} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\) \(\displaystyle = {{ (x{z^2}- y{z^2}) + ({x^2}y - x{y^2}}) - ({x^2}z-{y^2}z) \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\) \(\displaystyle = {{{z^2}\left( {x - y} \right) + xy\left( {x - y} \right) - z\left( {x - y} \right)\left( {x + y} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle = {{\left( {x - y} \right)\left( {{z^2} + xy - xz - yz} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle = {{\left( {x - y} \right)\left[ {x\left( {y - z} \right) - z\left( {y - z} \right)} \right]} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}}\)\(\displaystyle = {{\left( {x - y} \right)\left( {y - z} \right)\left( {x - z} \right)} \over {xyz\left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)}} = {1 \over {xyz}}\) Loigiaihay.com
Quảng cáo
|