Bài 153 trang 99 SBT Toán 8 tập 1

Giải bài 153 trang 99 sách bài tập toán 8. Cho tam giác ABC. Vẽ ở ngoài tam giác các hình vuông ABDE, ACFH. a. Chứng minh rằng EC = BH, EC vuông góc với BH...

Quảng cáo

Đề bài

Cho tam giác ABC. Vẽ ở ngoài tam giác các hình vuông ABDE, ACFH.

a. Chứng minh rằng EC = BH, EC ⊥ BH.

b. Gọi M, N theo thứ tự là tâm của các hình vuông ABDE, ACFH. Gọi I là trung điểm của BC. Tam giác MIN là tam giác gì ? Vì sao ?

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức về tính chất hình vuông và tính chất đường trung bình của một tam giác để chứng minh.

Lời giải chi tiết

a. Ta có: \(\widehat {BAH} = \widehat {BAC} + \widehat {CAH} = \widehat {BAC} + {90^0}\)

\(\widehat {EAC} = \widehat {BAC} + \widehat {BAE} = \widehat {BAC} + {90^0}\)

Suy ra: \(\widehat {BAH} = \widehat {EAC}\)

- Xét ∆ BAH và ∆ EAC:

BA = EA (vì ABDE là hình vuông)

\(\widehat {BAH} = \widehat {EAC}\) (chứng minh trên)

AH = AC (vì ACFH là hình vuông)

Do đó: \(∆ BAH = ∆ EAC\) (c.g.c)

⇒ BH = EC

Gọi giao điểm của EC với AB và BH lần lượt là K và O.

\(\widehat {AEC} = \widehat {ABH}\) (vì \(∆ BAH = ∆ EAC)\) (1)

hay \(\widehat {AEK} = \widehat {OBK}\)

- Trong ∆ AEK ta có: \(\widehat {EAK} = {90^0}\)

\( \Rightarrow \widehat {AEK} + \widehat {AKE} = {90^0}\) (2)

\(\widehat {AKE} = \widehat {OKB}\) (đối đỉnh) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {OKB} + \widehat {OBK} = {90^0}\)

- Trong ∆ BOK ta có: \(\widehat {BOK} + \widehat {OKB} + \widehat {OBK} = {180^0}\)

\( \Rightarrow \widehat {BOK} = {180^0} - \left( {\widehat {OKB} + \widehat {OBK}} \right)\)\( = {180^0} - {90^0} = {90^0}\)

Suy ra: EC ⊥ BH

b. Trong ∆ EBC ta có:

M là trung điểm của EB (tính chất hình vuông)

I là trung điểm của BC (gt)

nên MI là đường trung bình của tam giác EBC

⇒ MI = \(\displaystyle {1 \over 2}\)EC và MI // EC (tính chất đường trung bình của tam giác)

- Trong ∆ BCH ta có:

I là trung điểm của BC (gt)

N là trung điểm của CH (tính chất hình vuông)

nên NI là đường trung bình của ∆ BCH

⇒ NI = \(\displaystyle {1 \over 2}\)BH và NI // BH (tính chất đường trung bình của tam giác)

BH = CE (chứng minh trên)

Suy ra: MI = NI nên ∆ INM cân tại I

MI // EC (chứng minh trên)

EC ⊥ BH (chứng minh trên)

Suy ra: MI ⊥ BH

Mà NI // BH (chứng minh trên)

Suy ra: MI ⊥ NI hay \(\widehat {MIN} = {90^0}\)

Vậy ∆ IMN vuông cân tại I.

Loigiaihay.com

Xem thêm tại đây: Bài 12. Hình vuông
  • Bài 154 trang 99 SBT Toán 8 tập 1

    Giải bài 154 trang 99 sách bài tập toán 8. Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh rằng AK + CE = BE...

  • Bài 155 trang 99 SBT Toán 8 tập 1

    Giải bài 155 trang 99 sách bài tập toán 8. Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. a. Chứng minh rằng CE vuông góc với DF; b. Gọi M là giao điểm của CE và DF...

  • Bài 156 trang 99 SBT Toán 8 tập 1

    Giải bài 156 trang 99 sách bài tập toán 8. Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho góc EDC bằng góc ECD và bằng 15 độ. a. Vẽ điểm F trong hình vuông sao cho góc FAD bằng góc FDA và bằng...

  • Bài 12.1 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

    Giải bài 12.1 phần bài tập bổ sung trang 99 sách bài tập toán 8. Hình vuông có chu vi bằng 8 thì đường chéo bằng : A. 2...

  • Bài 12.2 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

    Giải bài 12.2 phần bài tập bổ sung trang 99 sách bài tập toán 8. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA ...

Quảng cáo
list
close
Gửi bài