Bài 12.3 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

Giải bài 12.3 phần bài tập bổ sung trang 99 sách bài tập toán 8. Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC lấy điểm F sao cho DE = CF. Chứng minh rằng AE = DF và AE ⊥ DF...

Quảng cáo

Đề bài

Cho hình vuông \(ABCD.\) Trên cạnh \(DC\) lấy điểm \(E,\) trên cạnh \(BC\) lấy điểm \(F\) sao cho \(DE = CF.\) Chứng minh rằng \(AE = DF\) và \(AE ⊥ DF.\)

Phương pháp giải - Xem chi tiết

- Chứng minh hai tam giác \(ADE\) và \(DCF\) bằng nhau.

- Vận dụng tính chất về các góc trong hình vuông.

Lời giải chi tiết

Xét \(∆ ADE\) và \(∆ DCF:\) 

\(AD = DC\) (vì \(ABCD\) là hình vuông)

\(\widehat D = \widehat C = {90^0}\)

\(DE = CF\) (gt)

Do đó: \(∆ ADE = ∆ DCF\, (c.g.c)\)

\(⇒ AE = DF\)

\(\widehat {EAD} = \widehat {FDC}\)

\(\widehat {EAD} + \widehat {DEA} = {90^0}\) (vì ∆ \(ADE\) vuông tại \(A\))

\( \Rightarrow \widehat {FDC} + \widehat {DEA} = {90^0}\)

Gọi \(I\) là giao điểm của \(AE\) và \(DF.\)

Suy ra: \(\widehat {IDE} + \widehat {DEI} = {90^0}\)

Trong \(∆ DEI\) ta có: \(\widehat {DIE} = {180^0} - \left( {\widehat {IDE} + \widehat {DEI}} \right)\)\(= {180^0} - {90^0} = {90^0}\)

Suy ra: \(AE ⊥ DF\)

Loigiaihay.com

  • Bài 12.2 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

    Giải bài 12.2 phần bài tập bổ sung trang 99 sách bài tập toán 8. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA ...

  • Bài 12.1 phần bài tập bổ sung trang 99 SBT Toán 8 tập 1

    Giải bài 12.1 phần bài tập bổ sung trang 99 sách bài tập toán 8. Hình vuông có chu vi bằng 8 thì đường chéo bằng : A. 2...

  • Bài 156 trang 99 SBT Toán 8 tập 1

    Giải bài 156 trang 99 sách bài tập toán 8. Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho góc EDC bằng góc ECD và bằng 15 độ. a. Vẽ điểm F trong hình vuông sao cho góc FAD bằng góc FDA và bằng...

  • Bài 155 trang 99 SBT Toán 8 tập 1

    Giải bài 155 trang 99 sách bài tập toán 8. Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. a. Chứng minh rằng CE vuông góc với DF; b. Gọi M là giao điểm của CE và DF...

  • Bài 154 trang 99 SBT Toán 8 tập 1

    Giải bài 154 trang 99 sách bài tập toán 8. Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh rằng AK + CE = BE...

Quảng cáo
close